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Abstract

Kidney transplant centers significantly influence patient survival, yet regulatory oversight of
their performance and practices remains limited. This study evaluates a policy designed to ter-
minate centers whose post-transplant mortality exceeds risk-adjusted thresholds. Using vari-
ation in policy exposure across centers and novel follow-up data, I employ a difference-in-
difference approach to estimate the policy’s impact on patient outcomes and center behaviors.
The policy reduced post-transplant mortality by 18 - 24%, though the mechanisms driving the
improvements evolved over time. Initially, centers responded by performing fewer transplants,
thereby avoiding high-risk kidney matches. Over time, transplant volume recovered as centers
adapted. They prescribed more potent immunosuppressants to reduce the risk of rejection and
intensified patient monitoring to manage side effects. These findings demonstrate that centers
initially reduced transplants due to unfamiliarity regarding policy nuances but subsequently
shifted toward actively improving post-transplant care.
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1 Introduction

Transplant centers are crucial in helping the 100,000 patients on the national waitlist obtain a

kidney transplant and recover from kidney failure. Despite receiving significant reimbursements

from the Centers forMedicaid andMedicare Services (CMS) 1, there was limited oversight of center

behavior and performance until high-profile issues, such as poor patient outcomes and inefficien-

cies, came to light in 2005 2. These concerns prompted the announcement of a federal oversight

program (GAO, 2008). The program enabled CMS to evaluate and guide transplant centers in

identifying areas for quality improvement and enhancing the efficiency of care delivery. However,

the accompanying financial penalties for poor performance can introduce unintended incentives.

For instance, to avoid penalties, centers may cherry-pick patients by prioritizing those with lower-

risk profiles, potentially leading to kidney wastage and denying transplants to patients who might

benefit the most (Sack, 2012).

This paper examines the effects of federal oversight on post-transplant mortality and treatment

decisions. I leverage exogenous variation in penalty exposure created by one of the most extensive

oversight programs in theUS deceased donor kidney transplant system. Specifically, I studyCMS’s

Conditions of Participation (CoP) policy, announced in February 2005 and implemented in July

2007. The policy penalizes transplant centers for having risk-adjusted post-transplant mortality

rates exceeding specified limits. Post-transplant mortality, defined as death or graft failure within

365 days after the transplant, carries significant consequences under the CoP, as centers can lose

certification if flagged more than twice over 30 months (Federal Register, 2007). Given CMS’s

status as the largest purchaser of organ transplantation services, the threat of withdrawal commands

immediate attention from center leadership (Hamilton, 2013).

Centers could respond to the threat of punishment in two ways. First, as policymakers in-

tended, centers could improve post-transplant care. For example, acute kidney rejection, the most

common post-transplant complication (Gjertson et al., 2002), can be mitigated by intensifying im-

1CMS spent $36 billion in 2017 on the care of renal failure patients, with approximately 13% allocated to kidney

transplants (Sawani, 2019).
2Source: Kaiser puts kidney patients at risk.
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munosuppressive regimens and dedicatingmore resources tomonitoring andmanaging side effects.

Secondly, centers may engage in selective behaviors, altering patient or kidney composition to re-

duce mortality rates. The Organ Procurement and Transplantation Network (OPTN) informs the

center of biologically compatible kidneys, but administrators retain discretion over accepting or de-

clining the kidney offers. The CoP’s penalties may influence decisions for marginal patient-kidney

pairs, as noted by a director in a 2012 New York Times article: “... if you have had a couple of

bad outcomes recently you say, ‘Well, why should I do this?’... You can always find a reason to

turn organs down...” 3. These potential trade-offs make oversight policies particularly controver-

sial in kidney transplantation. To address these concerns, I investigate how much of the observed

decline in mortality reflects improvements in post-transplant care versus the impact of selection

mechanisms.

To motivate the empirical analysis, I consider a stylized model of center behavior to understand

how federal oversight affects transplant decisions and post-transplant care. The center observes a

noisy signal of patient health and decides whether to select the patient for transplant. Then, it pro-

vides post-transplant care. These decisions jointly determine the center’s post-transplant mortality.

CMS reimburses the center if mortality falls below a specified limit. The center aims to maximize

profit by performing as many transplants as possible and providing comprehensive post-transplant

care. However, it also faces tradeoffs: performing too many transplants increases the risk of ex-

ceeding mortality limits and incurring penalties, while excessive post-transplant care is costly for

patients 4. The model illustrates how the center optimizes these competing objectives. Under the

CoP policy, the return to marginal transplants is reduced due to heightened performance scrutiny,

while the return to improved post-transplant care increases, incentivizing a shift in behavior.

The primary data sources are administrative follow-up records for all transplant patients, com-

prehensive patient-kidney offers data, and CMS’s CoP report. The dataset spans from 2001 to

2009, covering approximately four years before, two years after the 2005 CoP announcement, and

two years after the 2007 implementation. The follow-up data tracks each transplant patient’s health

3Source: New York Times
4For example, patients’ coinsurance kicks in or increases the opportunity cost of the patient’s time.
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status and records prescriptions and medical tests performed during the revisits. The patient-kidney

offer dataset records all kidney offers, including information on the final decision, offer dates, rea-

sons for declining, and detailed patient and kidney characteristics. The CoP report documents the

center’s flagging status, highlighting key center-level characteristics and offering critical insights

into how centers were evaluated under the CoP.

The research design exploits two sources of policy-driven variation. First, the announce-

ment and delayed implementation affect centers differentially, creating cross-sectional variation

in penalty beliefs. Second, the announcement introduces within-center temporal variation. Centers

are not randomly assigned to the penalty, and the panel is crucial in eliminating constant unob-

served differences across centers. This setting, therefore, lends itself to a difference-in-differences

research design. I follow Gupta (2021) and construct a continuously varying measure of center

expectations of exceeding the CoP threshold in the program’s first year based on their past mortal-

ity and transplant volume. This approach leverages the fact that mortality rates are persistent over

time, and hence, past performance is a valuable predictor of future flagging likelihood. This mea-

sure incorporates the intensive margin of the penalty incentive, i.e., centers with excellent recent

performance are expected to have a lower likelihood of being flagged.

However, estimates obtained via ordinary least squares (OLS) using this measure could be

biased upwards due to mean reversion (Chay, McEwan and Urquiola, 2005; Gupta, 2021). I cir-

cumvent this problem using an instrumental variable (IV) approach, thereby mitigating concerns

about measurement error. The instrument is a predicted mortality rate based on patient-kidney fac-

tors estimated using transplant samples from 2002 to 2004. All else equal, centers with a higher

proportion of these patients were more likely to be penalized 5. The identifying assumption is that

in the absence of CoP, centers with high versus low predicted mortality, held constant as in 2005,

would evolve along parallel trends. To explore the validity of this assumption, I present nonpara-

5My estimates might still suffer attenuation bias due to important and potentially unobservable differences in patient

composition across centers. To mitigate this issue, I leverage detailed follow-up data to compare outcomes for patients

with similar observable characteristics transplanted at the same center before and after the CoP announcement. This

approach isolates causal effects based on within-center changes in penalty beliefs. Where feasible, I further strengthen

identification by incorporating patient-fixed effects, thus capturing within-patient variation over time.
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metric estimates of dynamic effects on all key outcomes.

The baseline IV estimates imply that after CMS announced CoP, a one-standard-deviation in-

crease in center belief resulted in a 2.78 percentage point (pp) (25%) decrease in post-transplant

1-year mortality. The pattern persisted even after CMS implemented CoP. OLS estimates are sub-

stantially smaller, consistent with downward bias due to mean reversion. This estimate will under-

state the aggregate effects of the penalty.

Applying the same research design, I examine how selection and improved post-transplant

care influenced mortality across different policy phases. Initially, detailed patient-kidney offer

data reveal that after CMS announced CoP, centers became 16% less likely to transplant a given

patient-kidney pair. This cautious approach led to more high-risk kidneys being discarded, inadver-

tently reducingmortality due to fewer risky transplants. However, this selective behavior dissipated

as CMS implemented CoP. Using follow-up data, I quantify subsequent improvements in post-

transplant care during the implementation period. Centers became 7-13% more likely to prescribe

the potent immunosuppressant, tacrolimus, to patients during follow-up revisits, complemented by

increased patient monitoring. These clinical enhancements significantly reduced infection-related

mortality, a key side-effect of the heightened tacrolimus regimen. These findings, combined with

anecdotal evidence, indicate that initial policy uncertainty triggered cautious selection, but centers

quickly adapted by restoring transplant volumes and markedly improving post-transplant care.

Several patterns suggest a causal interpretation of these results. First, there are no differential

pretrends across centers at different levels of penalty risk. Second, the timing of the changes coin-

cides with the announcement of the CoP policy. Third, I find statistically insignificant effects on

otherwise similar outcomes that were not incentivized by the program, such as post-transplant mor-

tality rates beyond the first year, diabetes, return to dialysis, wait time for transplant, and waitlist

mortality. Fifth, the estimates are robust to alternative specification checks.
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1.1 Related literature

This paper contributes to three main strands of literature. First, it engages with the economic

debate on centralized quality disclosure 6. Closely related studies, such as Dranove et al. (2003); Jin

and Sorensen (2006); Bundorf et al. (2009); Ramanarayanan and Snyder (2012); Feng Lu (2012);

Kolstad (2013); Gupta (2021); Vatter (2023), examine provider responses to such policies in health-

care contexts, including coronary artery bypass grafts, fertility clinics, nursing homes, hospital

readmissions, and health plan ratings. My paper adds to existing work by identifying a transi-

tory adjustment period during which uncertainty or adaptive behavior led to unintended short-term

resource wastage. This finding highlights how government agencies can facilitate organizational

learning and minimize unintended consequences during policy transition.

Second, this paper contributes to economic research on deceased donor organ transplants,

which predominantly examines the design of allocation systems (Su and Zenios, 2005; Zhang,

2010; Bloch and Cantala, 2017; Agarwal, Hodgson and Somaini, 2020; Agarwal et al., 2021;

Leshno, 2022; Doval et al., 2024; Sweat, 2024). Related work, such as Dickert-Conlin, Elder and

Teltser (2019) and Bae (2024), investigates how state-level policies and changes to donor service

area boundaries affect allocation and mortality rates. My paper adds to existing work by analyzing

how federal oversight policy directly influences the behavior of transplant centers, highlighting the

underexplored channel of post-transplant care and its impact on patient outcomes.

Third, this paper contributes to the literature on the causal effects of CoP by addressing limi-

tations in previous studies that rely on cross-sectional variation in center flagging status (Schold,

Arrington and Levine, 2010; Schold et al., 2013; Hamilton, 2013) or within-center temporal varia-

tion (White et al., 2014). Closely related is Stith and Hirth (2016), which employs a difference-in-

differences design but focuses on centers transitioning in and out of treatment status, complicating

causal interpretation. My paper contributes to existing work by utilizing novel follow-up data to

highlight the impact of CoP on post-transplant care practices. Moreover, the 2.5-year gap between

6Dranove and Jin (2010) reviews the theoretical and empirical literature on quality disclosure. Their paper high-

lights various examples from healthcare, finance, and education.
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CoP’s announcement and implementation provides a unique opportunity to mitigate concerns about

changing treatment status and anticipatory behavior, strengthening the credibility of causal infer-

ences.

1.2 Roadmap

I organize the rest of the paper as follows. Section 2 describes the institutional details and the

CoP policy. Section 3 describes the model. Section 4 describes the data. Section 5 describes the

research design. Section 6 presents results on mortality and the various mechanisms at different

CoP phases. Section 7 presents robustness checks of the main results. Section 8 concludes.

2 Institutional background

A patient diagnosed with end-stage renal disease (ESRD) has two options: dialysis or kidney

transplant 7. Dialysis requires two to three treatments a week. Sessions are time-consuming; pa-

tients can be infected if nurses do not disinfect stations appropriately after use. These disadvantages

make kidney transplants the cheaper alternative (Matas and Schnitzler, 2004). In this paper, I focus

exclusively on deceased donor kidney transplant that accounts for 60% of all kidney transplants in

the U.S. (AKF, 2003) 8. This section describes how patients are added to the waitlist, how the

centralized system allocates kidneys, what post-transplant follow-up care entails, and the details of

the Conditions of Participation (CoP).

7Dialysis is a treatment that removes waste and excess water from the blood. There are two types of dialysis:

hemodialysis and peritoneal dialysis.
8Kidney exchange is an alternative way of getting a kidney transplant (Roth, Sonmez and Unver, 2004). However,

patients need a willing living donor, which can sometimes be logistically cumbersome. Hence, kidney exchange is

considered a different program from a deceased donor kidney transplant.
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2.1 Getting on the waitlist

The physician refers patients to a local transplant center when they have kidney failure 9. The

center’s selection committee will evaluate if the patient is eligible for a kidney transplant (i.e.,

started dialysis or had a glomerular filtration rate (GFR) below 20mL per minute). The center

will then register accepted patients on the national deceased donor waitlist and upload important

information, such as immunological profiles, health conditions, and factors to be computed into the

UNet system (AKF, 2003).

2.2 Kidney allocation and transplant process

The Organ Procurement and Transplantation Network (OPTN) designs and administers the

centralized allocation process for deceased donor kidneys. Centers upload a deceased donor’s med-

ical history and organ condition into UNet when brain or cardiac death is imminent. The system

identifies biologically compatible patients and ranks them according to their priority order. Many

factors contribute to the order, including, but not limited to, blood type, duration on the waitlist,

the patient’s location, and, in some instances, weight and size compared to the donor.

Recovered kidneys become unsuitable for transplants after 24-36 hours. So, UNet simultane-

ously contacts multiple transplant centers about their compatible patients to speed up the matching

process. When contacted, a transplant center has 1 hour to decide which patient receives the kidney

offer. During this hour, surgeons receive information about the donor’s medical history and can

request additional information from the donor’s hospital. At the same time, surgeons also evaluate

their patients’ health conditions and decide if the patient is eligible or suitable for the transplant.

For example, the patient’s condition might have deteriorated since the last evaluation, or the pa-

tient might be unavailable due to a family emergency. The transplant center does not contact every

compatible patient due to the tight deadline 10. It usually informs the patient after UNet confirms

9Patients usually follow the physician’s recommendation because the local transplant center is logistically conve-

nient and does not disrupt their dialysis routine (Schaffhausen et al., 2019). The average distance between a patient’s

home and the nearest center is 23 miles (Purnell and McAdams-DeMarco, 2020).
10Furthermore, no regulations mandate that transplant centers notify patients of their kidney offers (OPTN, 2023).
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the center’s acceptance (King et al., 2023; Husain et al., 2025)

If UNet receives multiple acceptances, the center with the highest-priority patient will receive

the kidney. After receiving the kidney, the center conducts a final blood test using samples from

both the patient and the donor 11. Otherwise, the center declines the kidney offer, and UNet contacts

the next center. UNet removes the patient from the waitlist 24 hours after a successful transplant.

In the case of a declined kidney offer, the patient returns to the waitlist without any penalty on their

priority for the next kidney offer (OPTN, 2023).

There are two channels through which the center affects the type of kidney its patients are

matched with. First, the center can set acceptable donor criteria for each patient on UNet. For

example, the center can limit the patient’s maximum donor age to 80. As a result, kidneys from

donors over the age of 80 will not be offered to the patient, even if they are biologically compatible.

Second, due to the tight one-hour deadline, the center usually accepts or declines incoming kidney

offers on the patient’s behalf. I leverage the patient’s acceptable donor criteria and patient-kidney

offer data to examine how CoP affects these two channels.

2.3 Post-transplant care and acute kidney rejection

Centers typically discharge patients within 8 to 14 days post-transplant. After discharge, pa-

tients will visit the center for regular check-ups at defined intervals (e.g., 6 months, 1 year, 2 years,

etc.) to monitor their recovery and kidney function.

Acute kidney rejection, an immune response typically occurring within the first 12 months

post-transplant, is the most common post-transplant complication 12. During rejection episodes,

the patient’s immune system, especially T-cells and antibodies, attacks the transplanted kidney,

potentially leading to impairment and graft failure (Becker et al., 2022). To mitigate rejection

risk, centers prescribe maintenance immunosuppressants, most commonly calcineurin inhibitors

11This blood test is called a serum crossmatch. It mixes the donor cells with the patient’s blood to determine if the

antibodies will bind to the donor cells and cause kidney damage. Source: Blood tests for transplant
12Approximately 15−20%of transplanted patients will experience some degree of kidney rejection. Source: Cleve-

land Clinic.
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(CNIs), such as cyclosporine and tacrolimus. These drugs inhibit calcineurin, preventing T-cell

activation and subsequent immune response against the transplanted kidney (Lee, Myoung and

Kim, 2023). Medicare Part B covers the patient’s immunosuppressive drugs for the first 36 months

post-transplant, after which Medicare will stop paying if the patient is under 65 years old and does

not suffer from any disability 13.

In Section 6.3, I utilize follow-up data that tracks patient health outcomes and immunosuppres-

sant prescriptions to evaluate how CoP impacts the center’s post-transplant practices, particularly

in terms of immunosuppressant prescribing patterns and the management of potential side effects.

2.4 Conditions of Participation (CoP)

Before July 2007, OPTN was the primary organization responsible for monitoring a transplant

center’s number of post-transplant survival but only twice recommended to the Department of

Health and Human Services to remove a transplant center’s certification (GAO, 2008). Following

several high-profile problems that came into light in 2005, CMS became concerned that the lack of

severe penalties for poor performance may have led to a decline in the quality of kidney transplants

14.

CMS announced CoP in February 2005 and implemented it in July 2007. The policy provides

a foundation to (i) protect other potential Medicare beneficiaries who are waiting for organs for

transplantation; (ii) establish sufficient quality and procedural standards to ensure that transplants

are performed safely and efficiently; and (iii) reduce Medicare expenses by decreasing the likeli-

hood that a transplant will fail (Federal Register, 2005). Centers submit the 1-year post-transplant

outcomes of a rolling 2.5-year cohort to the Scientific Registry of Transplant Recipients (SRTR)

in the first week of every January and July 15. CMS flags a transplant center for poor performance

if all of the following criteria are satisfied:

13Patients pay the Part B deductible and a 20% coinsurance. Source: Medicare and anti-rejection drugs.
14Source: Los Angeles Times.
15Figure C.III in the appendix illustrates an example of a rolling 2.5-year cohort. The January 2011 submission

(black box) consists of transplants from July 1, 2007, to December 31, 2009 (black line). Similarly, the July 2011

submission (red box) includes transplants from January 1, 2008, to June 30, 2010 (red line).
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1. O/E ≥ 1.5

2. O − E ≥ 3

3. Pr(O = E) ≤ 0.05

O is the center’s observed number of patient deaths or graft failures within 1 year post-transplant;

E is the center’s expected number of patient deaths or graft failures within 1 year post-transplant.

SRTR calculates E by estimating a Cox regression model (Cox, 1972), using all the transplants

in the rolling 2.5-year cohorts submitted by each transplant center. The model utilizes extensive

patient, donor, and match characteristics, including, but not limited to, age, race, diabetic status,

donor cause of death, and human leukocyte antigen (HLA) matching. However, the model does not

include center characteristics because “center characteristics and practices may be associated with

the differences we are trying to identify and therefore should not be risk-adjusted away.” (Dick-

inson et al., 2008). Criterion one states that the center’s observed deaths have to exceed expected

deaths by 50%. Criterion two states that the difference between the observed and expected deaths

must be greater than 3. Finally, criterion three states that if observed deaths differ from expected

deaths, the difference must be statistically significant at the 95% significance level. Intuitively, cri-

teria one and two state that the center cannot have too many observed deaths; criteria three can be

interpreted as CMS’s attempt to protect low-volume transplant centers from statistical anomalies

in patient deaths. For example, a patient death is more likely to push a low-volume center’s OE

death ratio in criteria one above the 1.5 limit compared to a high-volume center (Federal Register,

2005) 16.

Once CMS flags a center for poor performance, it implements a data-driven quality assessment

and performance improvement (QAPI) system. If CMS flags the center again within the next 30

months, it risks losing its program certification and Medicare funding. However, most centers

have 210 days to appeal that their poor performance is due to mitigating circumstances. I present

an example of a CoP report in Figure C.IV.

16I account for transplant volume and unadjusted mortality in Section 5.1 when constructing center flagging beliefs.
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Stage 1

Observe: signal, x̃

Choice: accept/decline,

A(x̃)

Stage 2

Observe: health, x

Choice: post-transplant

care, q(x)

Stage 3

Observe: death rate,

P (x, q(x)) and receive

payments

Figure I: Timeline of the center behavior

3 Conceptual framework

In this section, I formalize the transplant center’s incentives and explore how CoP affects

decision-making. I present a stylized model where the center observes a noisy signal of patient

health and then chooses the transplant eligibility threshold and the amount of post-transplant care.

The center must balance the tradeoffs between profit, patient welfare, and CoP compliance. Specif-

ically, it weighs the revenue from transplant procedures and post-transplant care against regulatory

penalties associated with high patient mortality. The model delivers two predictions about the

center’s response to CoP implementation. First, CoP raises the marginal cost of each transplant

by increasing the penalty for poor outcomes, leading centers to reduce transplants. Second, by

penalizing poor outcomes, CoP incentivizes centers to improve post-transplant care despite the as-

sociated costs. In subsequent analysis, I model patient mortality in my setting, describe the center’s

objective function, and characterize the optimal transplant decision and post-transplant care. Fi-

nally, I provide comparative statics on key parameters and present proofs in Appendix A. Figure I

illustrates the center’s timeline and decision-making17.

17For brevity, I abstract from the kidney decision in my current model. In Appendix B, I include an additional stage

where the center chooses either a good or a bad kidney. Both models have similar results on transplant threshold and

post-transplant care.
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3.1 Setup

Patient health is denoted as x, where x ∼ N(µx, σ
2
x)

18. However, when deciding whether to

transplant, centers only observe a noisy signal of patient health, x̃ = x+ u, where u ∼ N(0, σ2
u) is

independent of x. Thus, x̃ is an unbiased signal for patient health x. After the transplant, centers

observe x and decide on post-transplant care q(x). Transplant patients die if the latent variable

y > 0, where y = ε − x − q(x) and ε ∼ N(0, σ2) is a normally distributed idiosyncratic shock.

Let the probability that a patient with health x and post-transplant care q(x) die to be P (x, q(x)) =

1 − Φ
(

q(x)+x
σ

)
, which is decreasing in q and x: more post-transplant care or healthier patient

reduces the likelihood of transplant deaths. Conditional on transplant decision and post-transplant

care, the center expects
∫
x̃
A(x̃)

∫
x
P (x, q(x))p(x|x̃)dxdF (x̃) patients to die, where p(x|x̃) is the

posterior distribution of x given x̃ and can be derived with Bayes’ rule.

I follow Clemens and Gottlieb (2014); Dickstein (2017); Alexander (2020); Shi (2023) and

model the center’s objective function as a weighted combination of profit and concern for patient

utility. The weight placed on profit is ρ and can be interpreted as the center’s belief in punishment.

In my setting, the center becomes more altruistic and places more weight on patient utility when

the likelihood of punishment is low (i.e., low ρ). CMS pays the center a fixed reimbursement π for

each transplant and a reimbursement rate α for each unit of post-transplant care, q(x). Thus, the

center profit is π+αq(x). A center’s concern for patient welfare can be understood as altruism on

behalf of the patient or as the center acting to preserve its reputation (Alexander, 2020).

The patient’s utility from post-transplant care is concave in q(x), reflecting diminishing returns

to care. Healthier patients (higher x) derive greater benefits from transplants, but excessive care

imposes costs due to coinsurance or opportunity cost on patients’ time (Senanayake et al., 2020).

The patient receives zero if the center does not perform a transplant. The center maximizes utility

and choosesA(x̃), q(x) to maximize a weighted average of their profit and the patient’s utility from

transplant19:

18Patients with higher x are deemed healthier and more suitable for transplant (OPTN, 2023).
19The notation q(x) indicates that centers observe patient health status when choosing post-transplant care.
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max
A(x̃),q(x)

∫
x̃

A(x̃)

∫
x

ρ
center profit︷ ︸︸ ︷

[π + αq(x)] + (1− ρ)

patient utility︷ ︸︸ ︷[
xq(x)− γ

2
q2(x)

] p(x|x̃)dx dF (x̃)

s.t.

small center discount︷ ︸︸ ︷∫
x̃

A(x̃)

”not too many deaths”︷ ︸︸ ︷∫
x

P (x, q(x))p(x|x̃)dx dF (x̃) ≤ τ

(1)

τ is the CoP limit, and the rest of the terms in the constraint reflect the CoP conditions in Section

2.4.
∫
x
P (x, q(x))p(x|x̃)dx mimics conditions 1 and 2: there cannot be too many post-transplant

deaths. However, even if it does, the center is exempted if condition 3 fails (i.e., the sample size

is so small that differences between observed and expected deaths are statistically insignificant).∫
x̃
A(x̃)dF (x̃) mimics condition 3 and serves as a scaling factor that makes it less likely for small

centers to exceed the CoP limit, τ .

Intuitively, the center balances competing incentives. On one hand, it seeks to maximize profit

by performing more transplants and providing reimbursable care. On the other hand, performance

concerns and patient welfare impose constraints: (i) transplanting too many patients increases

the likelihood of exceeding the CoP mortality limit; (ii) patients dislike excessive post-transplant

care due to the marginal cost γ > 0. The center optimally trades off these incentives by adjust-

ing the transplant decision A(x̃) and post-transplant care q(x). Next, I characterize the optimal

A∗(x̃), q∗(x) and present the proofs in Appendix A.

Proposition 1. The optimal q∗(x) is an implicit solution to the equation 10. A∗(x̃) takes the form

of a cutoff strategy as defined in 11, and t∗ is the transplant threshold where patients with x̃ ≥ t∗

will receive transplants and post-transplant care. Conversely, patients with x̃ < t∗ will receive no

transplants nor post-transplant care.
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3.2 Comparative statics

In this stylized model, the pre-CoP announcement reflects τ → ∞, meaning no effective

regulatory constraints on the product of transplants and mortality, allowing centers to optimize

without restrictions. The post-CoP announcement reflects τ < ∞, introducing binding regulatory

constraints. The following result illustrates the comparative statics for the transplant threshold t∗

and post-transplant care q∗(x) as CMS announces CoP (i.e., τ decreases). I present the proofs in

Appendix A.

Proposition 2. As CMS announces CoP (i.e., τ decreases), the transplant threshold t∗ increases(
∂t∗

∂τ
< 0

)
; post-transplant care q∗(x) increases

(
∂q∗(x)
∂τ

< 0
)
.

Proposition 2 predicts that the CoP announcement decreases the fraction of patients receiv-

ing transplants. This reduction is not necessarily due to centers selecting healthier patients, but

rather a higher threshold t∗ increases the likelihood that patients with better true health x surpass

it. Consequently, the average health of transplanted patients rises (i.e., E[x|x̃ ≥ t∗] increases with

t∗). The magnitude of this increase depends on how well the noisy signal x̃ reflects x. When x̃ is

highly informative (low Var(u)), the stricter threshold effectively excludes less-healthy patients,

substantially improving the average health of transplanted patients. Conversely, when x̃ is weakly

informative (high Var(u)), the threshold has little effect on health composition.

4 Data and descriptive analysis

This paper uses two administrative datasets from the OPTN: the Standard Transplant Analysis

Research (STAR) and Potential Transplant Recipient (PTR) data. The OPTN data system includes

data on all donors, waitlisted candidates, and transplant recipients in the U.S. submitted by its

members.
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4.1 Sample construction

The STAR dataset provides detailed information on patient and donor characteristics, as well

as survival outcomes. Crucially, patients who receive a transplant are also included in the follow-

up data, which tracks their health status over time and records all immunosuppressant prescriptions

and medical tests performed during subsequent visits. The PTR dataset comprises all kidney of-

fers generated by the system, as well as records of acceptance or decline decisions. These datasets

are populated using information gathered during the allocation process, forms submitted by trans-

plant centers from patient follow-ups after a transplant, and patient death dates merged from social

security records.

I restrict attention to patients who received a transplant between January 1st, 2001, and July

31st, 2009, which approximately spans 4 years before and 4 years after the CoP announcement in

February 2005 20. From this set, I exclude patients who required multiple organ transplants, those

who received a kidney from a living donor, and patients from pediatric transplant centers. Corre-

spondingly, I only use data on donor offers and acceptance decisions for my sample of patients.

This paper uses three different units of analysis. Section 6 uses patient-appointment information to

analyze post-transplant mortality and post-transplant care. Section 6.2 uses patient-kidney offers

to analyze transplant center accept-decline decisions. Section 6.2.2 uses kidney-level information

to analyze kidney utilization.

4.2 Descriptive analysis

Figure II presents a time-series plot of the post-transplant 1-year mortality rate from 2001 to

2009, showing a steady decline from approximately 12% in 2001 to 9% in 2009 21. This reflects sig-

nificant improvements in post-transplant survival over time. The downward trend appears to have

20I restrict my analysis sample to this period because theU.S. Food andDrugAdministration (FDA) approved generic

tacrolimus (Sandoz) in August 2009. This approval likely reduced the cost of maintenance immunosuppressants, which

may have incentivized transplant centers to perform more transplants. As a result, the approval could confound the

estimated causal effects of CoP on transplant behavior.
21Post-transplant 1-year mortality measures the percentage of patients who die within one year after receiving a

kidney transplant. For example, among patients transplanted in 2001, 12% died within one year.
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accelerated after the CoP announcement in February 2005, suggesting that the CoP announcement

may have contributed to these further improvements. For subsequent analysis, the period before

February 2005 is considered the pre-CoP period, February 2005 to July 2007 is the post-CoP an-

nouncement period, and the period after July 2007 is the post-CoP implementation period. This

timeline provides a natural framework for evaluating the impact of CoP on transplant outcomes.

Figure II: Post-transplant mortality decreasing from 2001-2012 (main analysis period)

Note: CMS announced CoP in February 2005, represented by the first red-dotted vertical line. CMS implemented

CoP in July 2007, represented by the second red-dotted vertical line. I define the pre-CoP period as January 2001 to

February 2005, the post-CoP announcement period as February 2005 to July 2007, and the post-CoP implementation

period as July 2007 to December 2009.

Table I presents summary statistics for the sample, with each row representing different follow-

up intervals, while panels group key variables. Between 2001 and 2009, 85,496 patients received

deceased donor kidney transplants, distributed across three periods (43% in 2001-2004, 31% in

2005-2007, and 26% in 2007-2009). Panel A shows high attendance rates at follow-up appoint-

ments, indicating strong patient compliance. Attendance, however, declines over time primarily

due to post-transplant mortality, which accounts for 92% of missed visits (Table D.I). Panels B

and C reveal diverging trends in prescription use, with tacrolimus use increasing and cyclosporine

use decreasing over subsequent follow-up intervals. Panel D illustrates stable hospitalization rates
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across different CoP phases. Overall, the patterns highlighted in Table I suggest high patient com-

pliance and provide preliminary evidence of evolving center practices aimed at improving the pre-

vention of kidney rejection. These findings are further explored in Section 6.3.

Table I: Follow-up outcomes before, after CoP announcement and implementation

Outcome Measure Pre-CoP Post-Announce Post-Implement

Panel A: follow-up compliance

2 weeks 98.4% 98.5% 98.7%

6 month 91.6% 92.6% 93.7%

1 year 87.8% 89.1% 90.5%

Panel B: tacrolimus prescription

2 weeks 64.9% 80.7% 87.8%

6 months 65.8% 74.8% 68.7%

1 year 65.7% 79.2% 84.5%

Panel C: cyclosporine prescription

2 weeks 26.5% 11.5% 7.0%

6 months 25.4% 10.5% 5.7%

1 year 24.8% 11.0% 7.0%

Panel D: hospitalizations

6 months 32.6% 33.5% 34.7%

1 year 22.9% 22.5% 21.7%

2 years 19.7% 19.4% 20.2%

Number of Observations 36446 27052 21998

Notes: This table presents summary statistics for follow-up outcomes before CoP, after CoP announcement, and im-

plementation at different follow-up intervals. Panel A shows the percentage of patients who attended follow-up ap-

pointments. 92% non-compliers are due to deaths. Panels B, C, and D are conditional on patients attending follow-up

appointments. Panel B shows the prescription rate for tacrolimus. Panel C shows the prescription rate of cyclosporine.

Panel D shows hospitalization rates during follow-up.

Tables D.II and D.III compare transplant kidney and patient characteristics pre-CoP, post-CoP

announcements, and implementation. A comparison of columns in both tables reveals no significant

differences in overall transplant profiles. However, Table D.III highlights a notable spike in dialysis

patients receiving kidney transplants post-CoP. This trend is likely unrelated to centers favoring

dialysis patients but instead reflects the broader expansion and consolidation of the two major

dialysis chains, Davita and Fresenius, during this time, which increased the number of patients
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undergoing dialysis treatment (Eliason et al., 2019). Overall, these comparisons provide strong

preliminary evidence that, while the total number of transplants has decreased, there is no clear

indication that centers are selecting against specific transplant profiles. These patterns are further

examined in Section 6.2.

5 Research design

The announcement of CoP in February 2005 created both cross-sectional variations in the

marginal penalty incentives across centers and within-center temporal variation. This setting lends

itself naturally to a differences-in-differences (DiD) research design to quantify the causal effect

of the CoP announcement 22. However, there are three empirical challenges to identifying these

effects that the proposed design addresses.

First, CoP flags centers based on past mortality performance and suitable statistical adjust-

ments. Since flagged and non-flagged centers differ in observable characteristics, relying solely on

cross-sectional comparisons could introduce bias. To address this, I rely on within-center estimates

to control for any time-invariant factors affecting center behavior.

Second, treatment status is not clearly defined because forward-looking center administrators

strategize based on their expectations of exceeding CoP limits rather than waiting for the flagging

status to be revealed. Simply comparing flagged and non-flagged centers may underestimate the

center’s response. Instead, I follow Gupta (2021) and model center behavior based on their ex-

pectations of exceeding CoP limits, conditional on information available at the end of the prior

six-month window. The linear equation below represents a static version of this economic model:

Yickt = αc + δt +
∑

s∈{ann,imp}

βsE[1(CoPct > ¯CoP)|It−1]× 1(t = s) +X ′
ikγ + εickt (2)

Here, Yickt represents the outcome of interest, such as patient mortality, the primary perfor-

22In Figure II, I show the post-transplant 1-year mortality from January 2001 to July 2007 and illustrate the pre-CoP

and post-CoP in my subsequent analysis.
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mance metric for this discussion. αc controls for time-invariant center characteristics, while δt

accounts for common shocks affecting all centers within a six-month window. The key term cap-

tures the center’s expectation of exceeding the unadjusted mortality cutoff based on its information

set at the start of the six-month window. This forward-looking approach differs from prior stud-

ies, which focus on post-implementation behavior, and allows me to capture potential anticipatory

responses during the 2.5 years between CoP’s announcement and implementation 23. The variable

εickt captures omitted factors affecting mortality, while Xik accounts for patient and kidney risk

factors. The parameter βs measures the average change in outcomes after the CoP announcement

or implementation when beliefs increased by 10 pp or one standard deviation.

5.1 Measure of center expectation

Center beliefs provide the key identifying variation across centers but remain unobserved. I

make two simplifying assumptions to construct an empirical analog. I assume the center bases its

expectation on knowledge of past mortality performance and transplant volume. I also assume that

centers have rational expectations conditional on past performance.

I follow Gupta (2021) and non-parametrically predict an empirical analog of each center’s

expectation of being penalized in the future using a kernel regression of actual penalty status on

the relevant unadjusted post-transplant mortality and transplant volume, as shown in equation 3.

E[1(CoPct > ¯CoP)|It−1] = f(Rc,t−1, TXc,t−1) + ξct

Ê[1(CoPct > ¯CoP)|It−1] = f̂(Rc,t−1, TXc,t−1)

(3)

Conceptually, this expectation predicts the probability of a penalty for a center based on the

experience of neighboring centers falling within the kernel bandwidth. I denote the predicted value

from the kernel regression as ρc,t+2. One problem is that the flagging status released in July 2007

is not exogenous; it consists of transplants that coincide with the post-CoP announcement. To

23The potential penalties for non-compliance, such as system reviews, temporary shutdowns, and CMS decertifica-

tion, provide strong incentives for the center to adjust its behavior in anticipation of CoP’s implementation.
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estimate the center’s belief, I circumvented this issue using the flagging status in January 2005, July

2005, and January 2006. Their 2.5-year rolling cohort does not overlapwith the CoP announcement.

I illustrate this in Figure C.V. Hence, I calculate the probability of flagging using these penalty

statuses and denote it as ρc.

Figure III: Density of center likelihood of future flagging

Note: This figure illustrates the density of the constructed continuously varying measure of a forward-looking center’s

expectation of being flagged in the future. The expectation, Pc, is predicted by the unadjusted mortality rate and

transplant volume from 2005-2006.

In Figure III, the average (median) transplant center has a 10 (7)% probability of being flagged

in the future. Using a similar approach to Gupta (2021), I estimate significantly lower penalty ex-

pectations than those observed in the Hospital Readmissions Reduction Program (HRRP), where

approximately 50% of hospitals receive penalties. This discrepancy arises because CMS penalizes

hospitals in HRRP if their risk-adjusted 30-day readmission rates exceed the national average, re-

sulting in a higher likelihood of a baseline penalty. In contrast, under CoP, centers must meet all

three conditions outlined in Section 2.4 to be penalized, significantly lowering the expectation of

penalties. Figure C.VI plots the density of beliefs, showing how penalty expectations in the CoP
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setting differ from those in HRRP. Additionally, condition 3 of the CoP is specifically designed

to protect low-volume centers, which are more likely to exceed condition 1 (i.e., an observed-to-

expected death ratio exceeding 1.5), thereby further reducing the likelihood of penalty.

Although the likelihood of penalties is relatively low, the expected loss for flagged centers

is substantial. As discussed in Section 2.4, flagged centers must undergo a system review, and

temporary shutdowns pose a significant opportunity cost to their profit margins. Moreover, centers

flagged twice within 30 months face the threat of CMS decertification, which could effectively

shut down their transplant operations. These sizeable potential losses provide strong incentives

for centers to adjust their behavior, focusing on improving post-transplant outcomes and avoiding

conditions that might trigger penalties.

5.2 Mean reversion

The OLS regression in the previous subsection could underestimate the effect of the CoP an-

nouncement due to the possibility of mean reversion (Chay, McEwan and Urquiola, 2005; Gupta,

2021). Transplant centers may have escaped penalty due to a temporary downswing in their mor-

tality rate above their “true” mean, just as the flagging rate was first determined. They adjust their

behavior, knowing that their performance will revert to their true, lower-quality self in the future.

Hence, an OLS regression on center beliefs will suggest that the penalty did not motivate centers to

improve. I overcame this concern by using an instrumental variables approach, relying on variation

in center quality from 2002 to 2004, before the CoP announcement, to generate exogenous vari-

ation in penalty probability under CoP. This approach assumes that true hospital quality remains

stable over time and utilizes historical features to predict the probability of flagging, thereby elimi-

nating the impact of temporary fluctuations. Furthermore, the instrument is exogenous because it is

estimated using pre-CoP data and, therefore, is not influenced by contemporaneous policy changes.

This type of dynamicmodel has been extensively analyzed (Anderson andHsiao, 1981; Amemiya

and MaCurdy, 1986; Arellano and Bond, 1991). One solution to obtain a consistent estimate of β

is to use baseline or ”predetermined” characteristics of center c as instruments for ρc (Arellano and
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Bover, 1995; Acemoglu and Finkelstein, 2008; Gupta, 2021). Accordingly, I use a center-level in-

strument Zc predicted using baseline CMS covariates 24. The IV approach also mitigates concerns

of measurement error in constructing center expectations.

Equation 5 presents the empirical version of the conceptual model in equation 2, where I replace

the expectation term with the estimate obtained using equation 3. Equation 4 also contains the first-

stage equation:

ρc × 1(t = s) = π1c + π2t + λZc × 1(t = s) +X ′
ikπ3 + uickt ; s ∈ {ann, imp} (4)

Yickt = αc + δt +
∑

s∈{ann,imp}

βsρ̂c × 1(t = s) +X ′
ikγ + εickt (5)

I estimate the two rows of equations jointly using two-stage least squares (2SLS), such that the

endogenous variable, ρc, is replaced by the predicted value, ρ̂c generated using the first stage. The

baseline instrument is an expected mortality rate using data on patient and kidney risk factors from

2002 to 2004. This is the earliest year for which data are available. The predicted value is, therefore,

purged of unobserved factors and transient noise. The identifying assumption is that centers with

low versus high values of expected mortality rates held constant as in 2005 would evolve along

parallel trends in the absence of the CoP announcement. To explore the validity of this assumption,

I plot the coefficients βs obtained by estimating the following dynamic nonparametric equation:

Yickt = αh + δt +
∑

s 6=2003h2

βs1(dZc=1)× 1(t = s) + εickt (6)

dZc is an indicator set to 1 if center c is the top half of all centers, ranked by the instrument Zc.

Recall from previous discussions that the center with the highest historical mortality rate has the

highest penalty risk and, therefore, the most incentive to improve.

24These include cold ischemia time, donor medical history, patient and kidney diagnosis, age, BMI, creatinine levels,

race, insurance coverage, etc.
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5.3 Subsample

To identify the causal effect of the CoP policy on post-transplant mortality and center behav-

iors, I compare patients from the same transplant center whose follow-up periods do not overlap

with the CoP announcement (illustrated as solid lines in Figure C.VII). Excluding these overlap-

ping cases mitigates temporal confounding, as mortality risks naturally evolve over time, ensuring

comparisons reflect outcomes exclusively influenced by pre- or post-CoP conditions and thereby

enhancing internal validity.

However, the above approach could still be biased if the composition of patients within centers

changed significantly after the CoP announcement, introducing unobservable differences 25. To

address this, whenever feasible, I supplement the previous analysis by using patients with over-

lapping follow-up timelines. In these cases, I employ patient-fixed effects regressions, leveraging

within-patient variation over time to isolate the causal effects of CoP 26. The following equation

represents the patient-fixed effects model:

Yict = αi + δt +
∑

s∈{ann,imp}

βsρc × 1(t = s) +X ′
itγ + εict (7)

Yict is the relevant outcome variable. αi controls for time-invariant patient characteristics, while δt

accounts for common shocks affecting all patients within a 6-month window.

6 Effects on post-transplant mortality and mechanisms

This section quantifies the effects of the CoP policy on post-transplant 1-year mortality, the

program’s targeted metric, to establish its top-line impact. Using patient-kidney offers and follow-

25Section 6.2.1 and 7.1.3 demonstrate that centers do not appear to systematically discriminate against specific

patient profiles or kidney types at the transplant or admission stages. These results mitigate concerns about potential

selection bias that could undermine the above identification strategy.
26A limitation of analyzing patients with overlapping follow-up timelines is that Medicare covers 80% of immuno-

suppressive medications expenses through Part B for the first three years post-transplant. Beyond that, coverage re-

quires eligibility based on age or disability, or patients must obtain coverage through other insurance plans or Medicare

Part D when eligible. This institutional feature makes it difficult to disentangle the policy’s causal impact from effects

arising from the loss of Medicare subsidies, especially after CMS implemented CoP.
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up data, I then analyze how the selection and post-transplant care channel drive the changes in

post-transplant mortality at different phases of the CoP policy, respectively.

6.1 Targeted metric

Figure IV: Impact on post-transplant 1-year mortality

Note: The figure presents the estimated effects on the probability of post-transplant 1-year mortality, obtained using

equation 6 with the instrument Zh and 2003h2 as the reference 6-month window. The first dashed vertical line is the

CoP announcement, and the second line is the CoP implementation. I cluster standard errors at the transplant center

level. Error bars indicate 95 percent confidence intervals.

Figure IV plots the coefficients βs of equation 6 for 6-month windows between 2001 and 2009,

with 2003h2 as the reference period, to examine changes in the probability of post-transplant 1-

year mortality. The plot reveals two key insights. First, no preexisting differential trends exist

between centers with low and high values ofZh, indicating that the parallel trends assumptionmight

hold in my setting. Second, after the CoP announcement in February 2005 (first dashed vertical

line), there was a statistically significant and economically meaningful decline in mortality for

centers with higher penalty risks. The pattern persisted even when CMS implemented CoP (second

dashed vertical line). My results suggest that the no-anticipatory assumption in prior studies, which

focus on behavior post-CoP implementation, may overlook essential center responses during the

25



announcement period.

Table II presents OLS (Column 1) and IV (Column 2) estimates, showing a 2.78 pp reduction

in post-transplant 1-year mortality for a one-standard-deviation increase in a center’s belief after

CMS announced CoP. The IV estimates are larger than the OLS estimates, consistent with concerns

that mean reversion may underestimate the CoP response.

For context, in 2004, 11% of the 10,370 kidney transplant recipients died within a year. A 2.78

pp decline implies that 853 patients died post-transplant, compared to 1,147 previously—a 24%

decrease. The improvements persisted even after CMS implemented CoP in July 2007, although

at a smaller magnitude (2.11 pp, 18% of the baseline).

Table II: Impact on targeted metric, post-transplant 1-year mortality

(1) (2)

OLS IV

Post-Announce -0.01517∗ -0.02782∗∗

(0.00615) (0.01031)

Post-Implement -0.01508∗ -0.02112∗

(0.00631) (0.01061)

Y mean 0.11767 0.11767

F-statistic 56.76781

Fixed Effects Center, 6-months Center, 6-months

Observations 78832 78832

Note: This table presents an estimated effect on the probability of post-transplant 1-year mortality, obtained by esti-

mating equation 5 (1st column, OLS) and jointly estimating equations 4 and 5 (2nd column, IV), respectively on the

subsample of patients whose post-transplant mortality timeline do not overlap with the CoP announcement described

in Section 5.3. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, ***p < 0.001.

Further analysis, as shown in Figure C.VIII and Table D.IV, using granular time intervals, re-

veals that mortality improvements are most pronounced within the first two weeks and six months

after receiving a kidney transplant. This suggests that transplant centers concentrated their mitiga-

tion efforts on these critical periods, such as closer monitoring and an adjusted immunosuppressant

regimen. While early and intermediate post-transplant periods show substantial improvements, the

policy had little or no effect on mortality beyond two years. These findings suggest that CoP signif-

icantly improved early transplant outcomes and that centers prioritize immediate and intermediate
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recovery stages to achieve these gains. In the following subsection, I examine how both selection

and post-transplant care channels contributed to the improvements in post-transplant mortality.

6.2 Selection channel

Quantifying the role, if any, of distortions in producing the decline in post-transplant 1-year

mortality reported above is vital. This subsection examines how centers select patients and kidneys

for transplantation and their effect on kidney utilization.

6.2.1 Selection into transplant

Figure V: Impact on patient-kidney offer acceptance

Note: The figure presents the estimated effects on the probability of accepting a patient-kidney offer, obtained using

equation 6 with the instrument Zh and 2003h2 as the reference 6-month window. I cluster standard errors at the

transplant center level. Error bars indicate 95 percent confidence intervals.

The CoP penalty reduces the financial attractiveness of performing transplants, incentivizing

centers to accept fewer patient-kidney offers and potentially wait for better matches to minimize

post-transplant mortality. Figure V plots the estimated effects on acceptance probabilities for

patient-kidney pairs in each 6-month window, using equation 6 with an acceptance indicator,Aickt,
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as the dependent variable. The figures show that centers expecting greater penalties decreased ac-

ceptance rates for patient-kidney pairs after the CoP announcement. However, acceptance rates for

these centers were already trending lower in 2004, suggesting that pre-existing trends may partly

explain the observed changes. The trend rebounded after CMS implemented CoP, highlighting a

potential uptick in acceptance behavior. On average, Table III indicates a 1.42 pp decline in ac-

ceptance probability, corresponding to a 16.2% decrease given the mean acceptance rate of 8.79%,

after CMS announced CoP. But such behavior dissipated as CMS implemented CoP.

Table III: Impact on selection into transplant

(1) (2)

OLS IV

Post-Announce -0.00967∗ -0.01453∗∗

(0.00396) (0.00535)

Post-Implement -0.01064∗ -0.01566

(0.00531) (0.00802)

Y mean 0.08273 0.08273

F-statistic 39.82527

Fixed Effects Center, 6-months Center, 6-months

Observations 642699 642699

Note: This table presents an estimated effect on the probability of accepting a patient-kidney offer, obtained using

equation 2 (1st column, OLS) and 4 (2nd column, IV). I cluster standard errors at the transplant center level. *p < 0.05,
**p < 0.01, *** p < 0.001

To test whether centers avoided certain patient or kidney profiles to reduce mortality risk, I

estimated triple-difference models interacting center penalty risk with patient and kidney covari-

ates from the CoP risk-adjustment model. Tables D.V and D.VI show no statistically significant

results, indicating effective risk adjustment that did not incentivize strategic selection based on in-

cluded covariates 27. However, risk-adjustment models might omit critical covariates predictive of

survival, potentially discouraging centers from transplanting these riskier profiles—an unintended

consequence of CoP (Weinhandl et al., 2009; Kasiske et al., 2012). Further triple-difference re-

gressions (Tables D.VII, D.VIII) find no evidence supporting this concern 28.

27See SRTR website and Table 1 of Weinhandl et al. (2009) for consistently included covariates.
28The omitted covariate list is non-exhaustive. For instance, cardiovascular disease or treatments that remove donor-
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6.2.2 Kidney discard

While CoP incentivized centers to become less likely to accept a given patient-kidney pair,

OPTN only discards deceased donor kidneys if no center is willing to transplant them. Each dis-

carded kidney represents a missed opportunity to save or improve a patient’s life, particularly given

the significant organ shortage and growing number of patients on the waitlist 29. While some kid-

neys are discarded due to legitimate medical concerns, such as poor quality or high risk of com-

plications, a substantial proportion of discarded kidneys might still be viable for transplantation.

Analyzing the broader implications of CoP on kidney utilization is essential to identify whether

CoP exacerbates these issues by incentivizing overly cautious behavior.

To investigate this, I aggregate data on all patient-kidney offers to the kidney level and construct

a weighted average of center penalty exposure, Exposurek
30. The following equation represents

the discard model:

Dkdt = αd + δt +
∑

s∈{ann,imp}

βsExposurek × 1(t = s) +X ′
kγ + εkt (8)

Here, Dkdt is the discard indicator, αd represents donor service area fixed effects, δt accounts

for six-month window fixed effects, and Xk is a vector of kidney characteristics. The parameter

of interest, βs, captures whether kidneys offered to more exposed centers are more likely to be

discarded after the CoP announcement or implementation. Table D.IX presents the results. Column

1 finds no statistically significant increase in overall kidney discard rates after CoP implementation.

Column 2, which introduces a triple-difference specification interacting exposure with a high-risk

kidney indicator, suggests that high-risk kidneys were 3.58 pp (23.8%) more likely to be discarded

than low-risk kidneys following CMS’s CoP announcement. However, this effect attenuated after

CoP implementation, suggesting an adaptive response among transplant centers.

Columns 3 and 4 examine the number of patients offered high-risk kidneys to explore themech-

specific antibodies—highlighted by Kasiske et al. (2012)—are not adjusted for or collected in my data.
29Nearly 30% of recovered kidneys are discarded each year (McKenney et al., 2024).
30I use the proportion of patients from the same transplant center as weights.
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anism behind this trend. Following CMS’s CoP announcement, high-risk kidneys were offered to

37.8 patients, a 17% increase relative to low-risk kidneys, suggesting greater difficulty finding an

accepting center. However, post-implementation, high-risk kidneys were offered to 95.7 fewer

patients (a 33.9% relative decrease), indicating that centers became more receptive.

Why did patient-kidney acceptance and kidney discard rebound? Anecdotal evidence suggests

that uncertainty surrounding the initial CoP proposal prompted transplant centers to adopt a cautious

approach to decision-making. For example, communications between members of the American

Society of Transplant Surgeons (ASTC) and CMS regulators highlight significant concerns about

the ambiguous appeal processes in the original CoP proposal:

“Although the joint task force still had some fundamental disagreements with the final

rule, it was felt to be a clear improvement over the initial proposal, … It also clarified

due process rights available to transplant centers in the event of an unfavorable review

and provided for the consideration of mitigating circumstances when outcome and

volume criteria were not met.’’ (Abecassis et al., 2008)

This excerpt highlights how uncertainty regarding penalties and appeals initially led to cau-

tiousness in transplant decisions. Once CMS clarified these procedural ambiguities and imple-

mented CoP, transplant acceptance rates rebounded, aligning with the empirical patterns depicted

in Figure V 31.

6.3 Post-transplant care channel

In Section 3, I presented a stylized model describing the center’s incentives and how CoP af-

fects the center’s behavior. Under this model, optimal post-transplant care, q∗(x), will equate the

marginal cost of incremental care with the marginal benefit to the patient and center. CoP incen-

tivizes centers to provide optimal post-transplant care, thereby decreasing the patient’s probability

of post-transplant mortality and, in turn, the center’s likelihood of exceeding the CoP threshold.

31In Section 7.2, I demonstrate that despite the initial drop in patient-kidney acceptance rates, this did not worsen

waiting times nor waitlist mortality.
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Hence, CoP nudges the center to increase post-transplant care on average (i.e.,
∂q∗(x)
∂τ

> 0). Using

novel follow-up data tracking patient immunosuppressant prescriptions and non-targeted patient

outcomes during revisits, I empirically assess how centers changed their treatment protocols in

response to CoP.

6.3.1 Maintenance immunosuppressants

The immune system naturally identifies and attacks foreign bodies, posing challenges for kid-

ney transplant recipients whose new kidney is perceived as foreign. Maintenance immunosuppres-

sants, particularly calcineurin inhibitors (CNIs), are crucial in preventing acute kidney rejection by

suppressing the immune response and reducing the risk of kidney rejection 32. CNIs, specifically

cyclosporine and tacrolimus, are widely prescribed due to their potency in suppressing immune

activity 33. In this section, I analyze prescription patterns for these two common CNIs.

Figure VI presents an event-study analysis of cyclosporine and tacrolimus prescription rates at

the 2-week follow-up interval across different CoP policy phases. Following the CoP announce-

ment, the prescription rates for cyclosporine decreased, while those for tacrolimus increased. Ta-

bles D.X and D.XI further quantify these shifts via DiD estimates. Specifically, Column 1 of each

table shows that 2-week cyclosporine prescriptions decreased by 5.65 pp (a 44% decline from the

12.7% baseline), while 2-week tacrolimus prescriptions increased by 5.89 pp (an 8% rise from the

80% baseline). These changes persisted post-CoP implementation and across subsequent follow-up

intervals 34.

These findings indicate centers with higher penalty beliefs systematically substituted tacrolimus

for cyclosporine. This substitution aligns with randomized controlled trials reporting improved

post-transplant 1-year mortality — the key metric for CoP— due to reduced acute kidney rejection

32Three types of immunosuppressants are utilized during transplantation: (i) induction medicines—potent in-

travenous medications administered at transplant to initially suppress the immune system; (ii) maintenance

medicines—ongoing treatments used to prolong graft viability; and (iii) rejection medicines—used to treat rejection

episodes. Source: UNOS, types of immunosuppressants.
33In my data, CNIs are prescribed in 93% of a patient’s immunosuppressant regimen and are often used in combi-

nation with antimetabolites and corticosteroids.
34In the appendix, I obtain similar results in Table D.XII using patient-fixed effects, as described in Section 5.3.
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Figure VI: Impact on maintenance immunosuppressant prescription at different follow-up periods

Note: The figure presents the estimated effects on the probability of prescribing cyclosporine and tacrolimus at the

2-week follow-up interval, obtained using equation 6 with the instrument Zh and 2003h2 as the reference 6-month

window. The first dashed vertical line is the CoP announcement, and the second line is the CoP implementation. I

cluster standard errors at the transplant center level. Error bars indicate 95% confidence intervals.

with tacrolimus (Webster et al., 2005). I find similar evidence in Table D.IV showing decreased

kidney rejection-related deaths at 6 months and 1 year follow-ups post-CoP implementation.

6.3.2 Side effects and non-targeted outcomes

While tacrolimus is more effective in preventing kidney rejection, it increases the risk of gas-

trointestinal disturbances and diabetes compared to cyclosporine (Lee, Myoung and Kim, 2023).

Next, I assess whether increased tacrolimus prescriptions worsened non-targeted patient outcomes

(i.e., readmissions, diabetes, return to dialysis, etc.). Column 1 of Table D.XV shows a 3.72 pp

(16.9%) increase in readmissions during the 1-year follow-up period relative to a baseline of 22.1%,

following the CoP announcement. However, this rise in hospitalization likely reflects centers’ in-

creased vigilance and conservative discharge criteria rather than deteriorating patient health. This

interpretation is supported by statistically insignificant DiD estimates for other non-targeted out-
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comes in Columns 2-4 in Table D.XV and Columns 1-4 in Table D.XVI 35.

Additionally, the increased use of tacrolimus likely coincided with improved care quality and

better management of viral infections associated with immunosuppression. This is evidenced in

Table D.XIV, where Column 1 indicates a 0.4 pp (46%) reduction in deaths due to viral infections

within 2 weeks post-transplant (baseline: 0.96%) after CoP’s announcement, a pattern persisting

post-CoP implementation and across follow-up intervals.

Overall, the analysis indicates transplant centers shifted toward prescribing the more potent

tacrolimus and intensified patient monitoring for potential side effects. This shift has significant

economic implications for CMS. James and Mannon (2015) estimated annual maintenance costs at

$16,000 for tacrolimus versus $8,400 for cyclosporine. While more expensive upfront, prescrib-

ing tacrolimus with enhanced monitoring remains considerably cheaper than treating acute kidney

rejection ($22,407 per episode) or managing kidney failure through dialysis ($70,581 annually)

or retransplantation ($106,373) (Gheorghian et al., 2012). A conservative back-of-the-envelope

calculation, assuming an 8% kidney rejection probability (Hart et al., 2017), indicates this shift

generated approximately $8,350 in savings per patient in the first post-transplant year 36.

7 Robustness checks

This section discusses alternative mechanisms, the effect of CoP on non-targeted metrics, and

tests the sensitivity of the estimates to modeling assumptions.

7.1 Alternative mechanisms

7.1.1 Compulsory documentation

The CoP policy introduced new documentation requirements, mandating that transplant centers

maintain accurate and up-to-date medical records for both pre- and post-transplant care (Federal

35Unfortunately, I do not observe the reasons nor the length of hospitalization in the follow-up data.
36These calculations are conservative and exclude potential increases in hospitalization claims, additional medical

checks, and logistical dialysis costs.
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Register, 2007). Abecassis et al. (2008) suggests that these mandates could divert resources away

from patient care. To test this, I use teaching status and patient volume as proxies for centers’

administrative capacity and estimate triple-difference models. Table D.XVII shows no evidence

that CoP differentially affected post-transplant mortality or organ acceptance rates at centers with

lower administrative capacity, suggesting that documentation requirements did not compromise

clinical performance.

7.1.2 Donor filtering

Transplant centers can proactively filter donor offers for patients listed in the UNet system

(King et al., 2022; Yu et al., 2024), such as setting maximum donor age criteria independent of

biological compatibility. The concern is that CoP incentivizes centers to impose stricter donor

criteria to avoid risky kidney profiles. Leveraging patients whose waitlist tenure overlaps with CoP

announcement and implementation, I employ patient-fixed effects regressions across various donor

characteristics 37. Tables D.XVIII and D.XIX reveal no consistent evidence of stricter criteria.

Instead, centers appear to loosen certain donor criteria (e.g., accepting higher creatinine levels,

longer ischemic times) to expand their kidney pool 38.

7.1.3 Strategic admission

Another way centers could influence post-transplant outcomes is by selectively admitting pa-

tients. For example, White et al. (2014) argues that centers might adopt stricter admission criteria,

especially targeting socioeconomic factors affecting patient compliance with post-transplant care

39. However, examining various socioeconomic and health indicators among admitted patients, I

find no support for this hypothesis in Tables D.XX and D.XXI. Since CoP penalizes centers for

post-transplant—but not waitlist—mortality, admitting patients without immediate transplant com-

37To minimize temporal confounding, I restrict the analysis to patients listed between 2004–2009 who waited fewer

than six months initially and remained on the waitlist for at least three years.
38Characteristics such as diabetes, obesity, donors outside the service area, and death by cardiac arrest were omitted

from the result tables as centers did not restrict these offers, reflecting minimal donor filtering.
39White et al. (2014) uses within-center temporal variation to analyze the patient admission strategies of flagged

centers.
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mitments does not directly affect performance metrics, which may explain why admission practices

remained unchanged.

7.1.4 CMV testing

Cytomegalovirus (CMV), a virus that can reactivate in immunosuppressed kidney transplant

recipients, is routinelymonitored in transplant care protocols. Regular testing enables early identifi-

cation of viral infections, allowing for timely antiviral treatment to prevent immune-mediated dam-

age (Hasanzamani et al., 2016; Al Atbee and Tuama, 2022). Table D.XXII finds no evidence that

centers significantly altered CMV testing across various follow-up intervals. Given its standard-

ization in transplant care, CMV testing practices likely required minimal adjustment in response to

the CoP policy 40.

7.2 Non-targeted patient outcomes

In Section 6.3.2, I presented an array of patient outcomes not targeted by CoP. I do not find

evidence that CoP worsened patient health during the recovery process. Next, I examine CoP’s

effect on the patient’s waitlist experience.

Transplant wait times are a critical measure of the system’s efficiency and fairness, as pro-

longed waits increase the risk of complications and reduce the likelihood of successful transplan-

tation. A potential concern is that the CoP policy may incentivize centers to modify their decision-

making processes to avoid penalties, potentially altering patients’ likelihood of receiving a trans-

plant or remaining on the waitlist for extended periods. Table D.XXIII examines this concern

and finds no evidence that either wait times or the probability of being removed from the waitlist

increased after CMS announced CoP.

These results support the findings in section 6.2.1, which indicate that centers do not use selec-

tive practices when determining which patients receive transplants. These findings suggest that the

CoP policy did not negatively impact patient wait times or waitlist mortality, further emphasizing

40Source: Managing Kidney Transplant Recipients.
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the policy’s neutrality in pre-transplant patient management.

7.3 Changing specifications

I test the sensitivity to changing keymodeling assumptions. First, I use the entire patient sample

and include patients whose post-transplant mortality timeline overlaps with the CoP announcement.

Table D.XXIV reproduces the coefficients for equation 5 using outcome variables: post-transplant

mortality, tacrolimus, and cyclosporine prescription. The estimates are similar to the specifications

that exclude overlapping patients.

Second, I use an alternate approach to construct center-flagging beliefs. A useful benchmark

is to assume that centers had perfect foresight and accurately predicted their actual flagging sta-

tus in July 2007 under CoP. This can be implemented straightforwardly by replacing the flagging

probabilities with actual first-time flagging status indicators in equation 5. Table D.XXV presents

estimates that are largely similar in terms of signs but are statistically insignificant. The results

here suggest that perfect foresight might not be an appropriate assumption in my context.

Third, I also changed the main specification, allowing the center flagging probability to vary

over time. Then, I include this measure in the model along with the interaction term and estimate a

standard differences-in-differences specification. The estimates in Table D.XXVI are considerably

smaller. Still, they remain statistically significant for most cases 41.

8 Conclusion

This paper examines a large-scale federal oversight program in the U.S. deceased donor kid-

ney transplant setting. While the CoP policy reduced post-transplant mortality rates by 18-24%,

the mechanisms driving these improvements evolved across different phases of the CoP policy.

Initially, centers became more conservative in transplanting a given patient-kidney pair due to un-

41Aweakness of this approach is that the beliefs computed for later periods rely on performance after the first penalty

status was known. If flagged centers responded by differentially lowering their mortality rate, their beliefs would

decrease in subsequent years, and the model would estimate a lower differential response across centers. Hence, this

approach may understate the true response, but it still offers a useful specification check.
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familiarity with the policy’s appeal process. This cautious approach resulted in more high-risk

kidneys being discarded and a reduction in mortality due to fewer risky transplants. Over time,

as centers became more familiar with the policy’s details, they restored transplant volumes and

prescribed more potent immunosuppressants to prevent kidney rejection. Furthermore, they com-

plemented these efforts with enhanced patient monitoring tomanage side effects related to immuno-

suppression. Back-of-the-envelope calculations suggest improved management of kidney rejection

generated savings of $8,350 per patient.

While the findings reveal temporary inefficiencies in kidney utilization after the CoP announce-

ment, they indicate that CMS largely achieved its stated goals: (i) protecting potential Medicare

beneficiaries awaiting transplantation; (ii) establishing standards for safe and efficient transplants;

and (iii) reducing Medicare expenses by lowering transplant failure risks (Federal Register, 2005).

Three factors likely contributed to this success. First, CoP’s incentive structure balanced mean-

ingful penalties with safeguards against disproportionate harm. Second, frequent communication

among American Society of Transplant Surgeons (ASTS) council members fostered collaboration

and guidance rather than punishment, easing adaptation (Abecassis et al., 2008). Third, although

imperfect, the CMS risk-adjustment model effectively accounted for key patient and kidney-related

covariates, mitigating concerns of strategic patient and kidney-related selection based on omitted

risk factors.

The findings point to several directions for future research. The analysis highlights the broader

potential of integrating policy design with mechanism design to address inefficiencies in the de-

ceased donor kidney program. Exploring how such frameworks can be expanded to other aspects of

organ allocation and post-transplant care could yield valuable insights for improving system-wide

outcomes.
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Appendices

A Stylized model of center behavior without kidney choices

This section provides the proof for Propositions 1 and 2 in Section 3. The center chooses its

transplant decision A(x̃) and post-transplant care q(x) to maximize its expected payoff:

max
A(x̃),q(x)

∫
x̃

A(x̃)

∫
x

Π(x,q(x))︷ ︸︸ ︷ρ
center profit︷ ︸︸ ︷

[π + αq(x)] + (1− ρ)

patient utility︷ ︸︸ ︷[
xq(x)− γ

2
q2(x)

] p(x|x̃)dxdF (x̃)

s.t.

∫
x̃

A(x̃)

[∫
x

P (x, q(x))p(x|x̃)dx
]
dF (x̃) ≤ τ

(9)

We solve the maximization problem via backwards induction.

A.1 Solving for q∗(x)

Let λ ≥ 0 be the Lagrange multiplier on the constraint. Define the Lagrangian:

L =

∫
x̃

A(x̃)

∫
x

[
Π(x, q(x))

]
p(x|x̃)dx dF (x̃) − λ

[∫
x̃

A(x̃)

∫
x

P (x, q(x))p(x|x̃)dxdF (x̃)− τ
]
.

Step 1: If the constraint is slack (λ = 0). For each x, we differentiate Π(x, q(x)) with respect

to q(x):

ρα + (1− ρ)
[
x− γ q(x)

]
= 0 =⇒ (1− ρ) γ q(x) = ρα + (1− ρ)x.

Hence

quncon(x) =
ρα + (1− ρ)x

(1− ρ) γ
.
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Step 2: If the constraint binds (λ > 0). For each x, we need

∂L
∂q

=

∫
A(x̃)

∂Π(.)

∂q
p(x|x̃)dxdF (x̃)− λ

∫
A(x̃)

∂P (.)

∂q
p(x|x̃)dF (x̃) = 0

where

∂

∂q

Π(x,q(x))︷ ︸︸ ︷{
ρ(π + α q(x)) + (1− ρ)

[
x q(x)− γ

2
q2(x)

]}
= ρα + (1− ρ)

[
x− γ q

]
.

and

∂

∂q(x)

P (x,q(x))︷ ︸︸ ︷[
1− Φ

(x+q(x)
σ

)]
= −φ

(
x+q(x)

σ

) 1

σ
,

Rearrange for q∗(x):

(1− ρ) γ q∗(x) = ρα + (1− ρ)x+ λ
1

σ
φ
(

x+q∗(x)
σ

)
.

Thus we have the implicit solution:

q∗(x) =
ρα + (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σ
φ
(

x+q∗(x)
σ

)
. (10)

If λ = 0, we revert to the unconstrained optimum. Otherwise, q∗(x) exceeds the unconstrained

level, reflecting a desire to reduce mortality.

A.2 Solving for the acceptance rule A(x̃)

Define the net benefit function, NB(x̃)

NB(x̃) =

∫
Π(x, q(x))p(x|x̃)dx− λ

∫
P (x, q(x))p(x|x̃)dx
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Since the posterior distribution of p(x|x̃) is increasing in x̃, NB(x̃) is a monotonic function of x̃,

A∗(x̃) takes the form of a cutoff strategy:

A∗(x̃) =


1 if x̃ ≥ t∗

0 if x̃ < t∗
(11)

where t∗ is such that NB(t∗) = 0. This completes the proof for proposition 1.

A.3 Comparative Statics: Effect of Decreasing τ

As τ decreases, the regulatory constraint tightens, and the Lagrange multiplier λ increases.

This forces the center to reduce the product

(# transplanted)× (# expected deaths).

They can do this in two ways:

• Raise t∗ (fewer transplants). Since

NB(x̃) =

∫
Π(x, q(x))p(x|x̃)dx− λ

∫
P (x, q(x))p(x|x̃)dx

increases in x̃, a higher threshold means fewer people qualify for a transplant.

• Raise q∗ (improve post-transplant care). From

q∗(x) =
ρα + (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σ
φ
(

x+q∗(x)
σ

)
,

a larger λ makes q∗(x) bigger for each x—the center “overspends” on care (relative to the

unconstrained level) to reduce mortality.

This completes the proof for proposition 2.
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B Stylized model of center behavior with kidney choices

In this section, I formalize the transplant center’s incentives and explore how CoP affects

decision-making. I present a stylized model where the center observes a noisy signal of patient

health and then chooses the transplant eligibility threshold, the kidney type, and the amount of

post-transplant care. The center must balance the tradeoffs between profit, patient welfare, and

compliance with CoP constraints. Specifically, the center considers the revenue from transplants

and post-transplant care, the relative scarcity of good kidneys, and the regulatory penalties from

high patient mortality. The model delivers three predictions about the center’s response to CoP

implementation. First, CoP raises the marginal cost of each transplant by increasing the penalty for

poor outcomes, leading centers to reduce transplants. Second, CoP’s stricter death constraints in-

crease the marginal benefit of the safer, “expensive” good kidney, resulting in a shift away from bad

kidneys. Third, by penalizing poor outcomes, CoP incentivizes centers to increase post-transplant

care despite its cost. In subsequent analysis, I model patient mortality in my setting, describe the

center’s objective function, and characterize the optimal transplant threshold, kidney choice, and

post-transplant care. Finally, I provide comparative statics on key parameters and present proofs

in the Appendix. Figure B.I illustrates the center’s timeline and decision-making.

Stage 1

Observe: signal, x̃

Choice: accept/de-

cline, A(x̃)

Stage 2

Choice: kidney,

k(x̃)

Stage 3

Observe: health, x

Choice: post-

transplant care,

q(.)

Stage 4

Observe: death

rate, P (x, k(.), q(.))

and receive pay-

ments

Figure B.I: Timeline of the center behavior
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B.1 Setup

Patient health is denoted as x, where x ∼ N(µx, σ
2
x)

42. However, when deciding whether to

transplant, centers only observe a noisy signal of patient health, x̃ = x + u, where u ∼ N(0, σ2
u)

is independent of x. Thus, x̃ is an unbiased signal for patient health x. Next, the center matches

the patient with the good (g) or bad (b) kidney. The good kidney is less risky (σg < σb). After

the transplant, centers observe x and decide on post-transplant care q(x, k). Transplant patients die

if the latent variable y > 0, where y = εk − x − q(x, k) and εk ∼ N(0, σ2
k). εk is a normally

distributed idiosyncratic shocks with mean 0 and variance σ2
k. Let the likelihood that a patient with

health x, kidney k, and post-transplant care q(x, k) die be P (x, k, q(x, k)) = 1 − Φ
(

q(x,k)+x
σk

)
,

which is decreasing in q and x: more post-transplant care or healthier patient reduces the likeli-

hood of transplant deaths. Similarly, the good kidney reduces mortality due to its lower variance

σ2
g . Conditional on transplant decision, kidney choice and post-transplant care, the center expects∫
x̃
A(x̃)

∫
x
P (x, k, q(x, k))p(x|x̃)dF (x̃) patients to die, where p(x|x̃) is the posterior distribution

of x given x̃ and can be derived with Bayes’ rule.

I follow Clemens and Gottlieb (2014); Dickstein (2017); Alexander (2020); Shi (2023) and

model the center’s objective function as a weighted combination of profit and concern for patient

utility. The weight placed on profit is ρ and can be interpreted as the center’s belief in punishment.

In my setting, the center becomes more altruistic and places more weight on patient utility when

the likelihood of punishment is low (i.e., low ρ). CMS pays the center a fixed reimbursement, π for

each transplant, and a reimbursement rate α for each unit of post-transplant care, q(x, k). Thus, the

center profit is π + αq(x, k). A center’s concern for patient welfare can be understood as altruism

on behalf of the patient or as the center acting to preserve its reputation (Alexander, 2020).

The patient’s utility from post-transplant care is concave in q(x, k), reflecting diminishing re-

turns to care. Healthier patients (higher x) derive greater benefits from transplants, but excessive

care imposes costs due to coinsurance or opportunity costs on patient’s time (Senanayake et al.,

2020). The patient also faces a waiting cost of g to receive a good kidney, reflecting the scarcity

42Patients with higher x are deemed healthier and more suitable for transplant(OPTN, 2023).
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of good kidneys. The patient receives zero if centers do not perform a transplant. The center max-

imizes utility and chooses A(x̃), k(x̃), q(x, k) to maximize a weighted average of their profit and

the patient’s utility from transplant43:

max
A(x̃),k(x̃)∈{g,b},q(x,k)

∫
x̃

A(x̃)

∫
x

ρ
center profit︷ ︸︸ ︷

[π + αq(.)] +(1− ρ)

patient utility︷ ︸︸ ︷[
xq(.)− γ

2
q2(.)− 1{k=g}g

] p(x|x̃)dxdF (x̃)

s.t.

”small center discount”︷ ︸︸ ︷∫
x̃

A(x̃)

”not too many deaths”︷ ︸︸ ︷∫
x

P (x, k, q(.))p(x|x̃)dx dF (x̃) ≤ τ

(12)

τ is the CoP limit, and the rest of the terms in the constraint reflect the CoP conditions in

Section 2.4.
∫
x
P (x, k, q(x, k))p(x|x̃)dx is equivalent to condition 1: there cannot be too many

post-transplant deaths. However, even if there is, the center can still escape CMS flagging if con-

ditions 2 and 3 are unmet.
∫
x̃
A(x̃)dF (x̃) mimics those conditions and serves as a scaling factor

that makes it less likely for small centers to exceed the CoP limit, τ .

Intuitively, the center balances competing incentives. On one hand, it seeks to maximize profit

by performing more transplants, using cheaper bad kidneys, and providing reimbursable care. On

the other hand, performance concerns and patient welfare impose constraints: (i) transplanting too

many patients and using the bad kidney increase the likelihood of exceeding the CoP mortality

limit; (ii) patients dislike excessive post-transplant care due to the marginal cost γ > 0. The center

optimally trades off these incentives by adjusting the transplant decisionA(x̃), kidney choice k(x̃),

and post-transplant care q(x, k). Next, I characterize A∗(x̃), k∗(x̃), q∗(x, k) and present the proofs

in Appendix.

Proposition 3. The optimal q∗(x, k) is an implicit solution to the equation 14. A∗(x̃) takes the form

43Note: The notation q(x, k) is to indicate that post-transplant care is chosen when x and k are observed.
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of a cutoff strategy 17 and t∗ is the transplant threshold where patients with x̃ ≥ t∗ will receive

transplants and post-transplant care. Conversely, patients with x̃ < t∗ will receive no transplants

nor post-transplant care. The optimal kidney allocation k∗(x̃) is defined as:

k∗(x̃) =


g t∗ ≤ x̃ < t∗g,

b x̃ ≥ t∗g,

(no transplant) x̃ < t∗.

where t∗g, the good kidney threshold, is the root to equation 16.

Because the center cannot observe a patient’s true health x and instead relies on the noisy signal

x̃, Proposition 3 implies a negative�sorting allocation rule based on x̃. Specifically, patients whose

signals lie in an intermediate range, x̃ ∈ [t∗, t∗g), receive the safer (good) kidney, while patients

with strong signals, x̃ ≥ t∗g, receive the riskier (bad) kidney. The intuition is that for borderline

(moderate) signals, the good kidney’s lower mortality risk (σg < σb) provides a significant survival

benefit that justifies incurring its waiting cost g. By contrast, for sufficiently high signals x̃ ≥ t∗g,

that survival benefit diminishes and no longer outweighs g, prompting the center to assign the

cheaper (bad) kidney. This tradeoff in expected benefit versus cost naturally yields a cutoff x̃ = t∗g

above which the center switches from good to bad kidneys.

B.2 Comparative statics

In this stylized model, the pre-CoP announcement reflects τ → ∞, meaning no effective

regulatory constraints on the product of transplants and mortality, allowing centers to optimize

without restrictions. The post-CoP announcement reflects τ < ∞, introducing binding regulatory

constraints. The following result illustrates the comparative statics for the transplant threshold t∗,

kidney choice t∗g, and post-transplant care q
∗(x, k) as CMS announces CoP (i.e., τ decreases). I

present the proofs in the Appendix.

Proposition 4. As CMS announces CoP (i.e., τ decreases), the transplant threshold t∗ increases
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(
∂t∗

∂τ
< 0

)
; post-transplant care q∗(x, k) increases

(
∂q∗(x,k)

∂τ
< 0

)
; the good kidney threshold t∗g

increases
(

∂t∗g
∂τ

< 0
)
.

Proposition 4 predicts that as CMS announces CoP, the fraction of patients receiving a trans-

plant decreases. However, this does not imply that enters are actively selecting healthier patients.

Instead, the higher threshold t∗ makes it more likely for a patient with better true health x to sur-

pass it. Consequently, average health among the smaller set of transplanted patients rises (i.e.,

E[x|x̃ > t∗) is increasing in t∗). The extent of this rise depends on the informativeness of the noisy

signal x̃. When x̃ closely tracks x (i.e., low Var(u)), the stricter threshold effectively excludes

less-healthy patients, strongly skewing the transplanted group toward high health. Conversely, if x̃

is weakly informative (i.e., high Var(u)), the higher threshold barely alters the health composition

of transplanted patients.

Furthermore, Proposition 4 predicts fewer bad kidney transplants after CMS implements CoP.

Using Figure B.II as an example, this decrease is because the center substitutes the bad kidneys

with the good kidneys for patients with a strong signal, x̃ ∈ [t∗g, t
∗CoP
g ]. However, this does not

imply more good kidney transplants because patients with intermediate signal, x̃ ∈ [t∗, t∗CoP ] will

not receive a transplant due to more stringent performance limits. Thus, the effect of CoP on

good kidney transplants is ambiguous and depends on the model’s parameter values (e.g., high/low

waiting cost, g).
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0 t∗ t∗g x̃

No Transplant k∗ = g k∗ = b

(a) Kidney matching when CoP limit, τ → ∞ (before CoP)

0 t∗CoP t∗CoP
g

x̃

No Transplant k∗CoP = g k∗CoP = b

(b) Kidney matching when CoP limit, τ < ∞ (after CoP)

Figure B.II: Kidney matching before CoP v.s. after CoP

Note: Panel A depicts the scenario when the CoP limit is not stringent (e.g., τ → ∞). Panel B depicts the scenario

when the CoP limit is very stringent (e.g., τ < ∞). The model predicts fewer bad kidney transplants because centers

substitute the bad kidneys for the good kidneys for patients with a strong signal, x̃ ∈ [t∗g, t
∗CoP
g ]. On the other hand,

patients with intermediate signal, x̃ ∈ [t∗, t∗CoP ], do not receive a transplant. Thus, the effect of CoP on good kidney
transplants is ambiguous and depends on the parameter value of the model (e.g., high/low waiting cost, g).
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B.3 Proofs for Proposition 3 and 4

From equation 12, the center’s objective function is

max
A(x̃),k∈{g,b},q

∫
x̃

A(x̃)

∫
x

Π(x,k,q)︷ ︸︸ ︷ρ
center profit︷ ︸︸ ︷
[π + αq] + (1− ρ)

patient utility︷ ︸︸ ︷[
xq − γ

2
q2 − 1{k=g}g

] p(x|x̃)dxdF (x̃)

s.t.

∫
x̃

A(x̃)

[∫
x

P (x, k, q)p(x|x̃)dx
]
dF (x̃) ≤ τ

(13)

We solve the maximization problem via backwards induction.

B.3.1 Solving for q∗

Let λ ≥ 0 be the Lagrange multiplier on the constraint. Define the Lagrangian:

L =

∫
x̃

A(x̃)

∫
x

[
Π(x, k, q)

]
p(x|x̃)dx dF (x̃) − λ

[∫
x̃

A(x̃)

∫
x

P (x, k, q)p(x|x̃)dxdF (x̃)− τ
]
.

Step 1: If the constraint is slack (λ = 0). For each x, we differentiate Π(x, k, q) with respect to

q:

ρα + (1− ρ)
[
x− γ q

]
= 0 =⇒ (1− ρ) γ q = ρα + (1− ρ)x.

Hence

quncon(x) =
ρα + (1− ρ)x

(1− ρ) γ
.
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Step 2: If the constraint binds (λ > 0). For each x, we need

∂L
∂q

=

∫
A(x̃)

∂Π(.)

∂q
p(x|x̃)dxdF (x̃)− λ

∫
A(x̃)

∂P (.)

∂q
p(x|x̃)dF (x̃) = 0

where

∂

∂q

Π(x,k,q)︷ ︸︸ ︷{
ρ(π + α q) + (1− ρ)

[
x q − γ

2
q2 − 1{k=g}g

]}
= ρα + (1− ρ)

[
x− γ q

]
.

and

∂

∂q

P (x,k,q)︷ ︸︸ ︷[
1− Φ

(
x+q
σk

)]
= −φ

(
x+q
σk

) 1

σk

,

Rearrange for q∗:

(1− ρ) γ q∗ = ρα + (1− ρ)x+ λ
1

σk

φ
(

x+q∗

σk

)
.

Thus we have the implicit solution:

q∗(x, k) =
ρα + (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σk

φ
(

x+q∗(x,k)
σk

)
. (14)

If λ = 0, we revert to the unconstrained optimum. Otherwise, q∗(x, k) exceeds the unconstrained

level, reflecting a desire to reduce mortality.

B.3.2 Solving for k∗(x̃)

Upon seeing x̃, the center forms a posterior over x, where p(x|x̃) is derived from Bayes’ rule,

with priors x ∼ N(µx, σ
2
x) and u ∼ N(0, σ2

u). x and u are assumed to be independent. Π(x, k, q
∗)

is the payoff for a transplanted patient of true health x given kidney k as defined in the previous

section. Thus, the center chooses k∗ at each x̃ such that:

k(x̃) = arg max
k∈{g,b}

Π̃(x,k,q∗)︷ ︸︸ ︷∫
[Π(x, k, q∗) − λP (x, k, q∗)] p(x|x̃) dx (15)
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Next, we define:

D(x̃) = Π̃(x, g, q∗)− Π̃(x, b, q∗) (16)

As x̃ increases, the posterior shifts to higher x. Since Π̃(x, g, q∗) and Π̃(x, b, q∗) differ mainly by

the cost g and the difference in survival benefits, then D(x̃) is decreasing in x̃: when x̃ is large,

the expected incremental survival benefit of g is smaller, so D(x̃) may become negative, favoring

kidney b. Thus, D(x̃) crosses zero exactly once, giving a unique cutoff t∗g. We have the following

cutoff rule:

k∗(x̃) =


g t ≤ x̃ < t∗g,

b x̃ ≥ t∗g,

(no transplant) x̃ < t∗.

B.3.3 Solving for the acceptance rule A(x̃)

Define the net benefit function, NB(x̃)

NB(x̃) =

∫
Π(x, k, q)p(x|x̃)dx− λ

∫
P (x, k, q)p(x|x̃)dx

Since the posterior distribution of p(x|x̃) is increasing in x̃, NB(x̃) is a monotonic function of x̃,

A(x̃) takes the form of a cutoff strategy:

A(x̃) =


1 if x̃ ≥ t∗

0 if x̃ < t∗
(17)

where t∗ is such that NB(t∗) = 0. This completes the proof for proposition 3.
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B.3.4 Comparative Statics: Effect of Decreasing τ

As τ decreases, the regulatory constraint tightens, and the Lagrange multiplier λ increases.

This forces the center to reduce the product

(# transplanted)× (# expected deaths).

They can do this in two ways:

• Raise t∗ (fewer transplants). Since

NB(x̃) =

∫
Π(x, q(x))p(x|x̃)dx− λ

∫
P (x, q(x))p(x|x̃)dx

increases in x̃, a higher threshold means fewer people qualify for a transplant.

• Raise t∗g (fewer bad kidney transplants). From

D(x̃) = Π̃(x, g, q∗)− Π̃(x, b, q∗)

a larger λ means centers can afford fewer expected deaths than before. This reduces the

marginal benefit of the bad kidney and raises t∗g

• Raise q∗ (improve post-transplant care). From

q∗(x, k) =
ρα + (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σk

φ
(

x+q∗(x)
σk

)
,

a larger λmakes q∗(x, k) bigger for each x—the center “overspends” on care (relative to the

unconstrained level) to reduce mortality.

This completes the proof for proposition 4.
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C Supplementary Figures

Figure C.III: An illustration of the rolling 2.5-year cohort for CoP

Note: The January 2011 submission (black box) consists of transplants from July 1, 2007, to December 31, 2009 (black

line). Similarly, the July 2011 submission (red box) contains transplants from January 1, 2008, and June 31, 2010 (red

line).
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Figure C.IV: An example of a transplant center’s CoP report

Note: This table is from Dickinson et al. (2008) and provides an example of a center that did not get flagged for

poor performance. The CoP conditions from Section 2.4 can be calculated from this table. For example, Condition 1

is in line 8 (e.g., O/E = 1.3 < 1.5); Condition 2 is calculated by taking the difference between lines 6 and 7 (e.g.,
O − E = 2.52 < 3); Condition 3 is in line 10 (e.g., Pr(O = E) = 0.469 > 0.05).
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Figure C.V: CoP reports and their 2.5-years rolling cohorts

Note: The green bars highlight the 2.5-year rolling cohort for the flagging status of the CoP report in January 2005,

July 2005, and January 2006. These reports are built on transplants before the CoP announcement (1st red dotted line).

The red bars are CoP reports in July 2006 and January 2007, built on 2.5-year rolling cohorts overlapping with the CoP

announcement.

60



Figure C.VI: Density of actual flagging beliefs in my setting versus simulated beliefs in Gupta (2021)

Note: The blue solid lines are the density of my estimated flagging beliefs ρc. The density is similar to a beta distribu-
tion with parameter (α = 1.5, β = 5) and support [0, 0.5]. The red dotted lines are simulated density for Gupta (2021)
using a truncated standard normal density with parameter (µ = 0.5, σ = 0.2) and support [0, 1]
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2003 2004 2005 2006 2007

Figure C.VII: Non-overlapping (solid) and overlapping (dashed) patients

Note: This figure highlights my regression subsample as described in Section 5.3. The length of the lines indicates

the patient’s post-transplant mortality timeline and varies according to the outcome of interest. Patients whose post-

transplant mortality timeline does not overlap with the CoP announcement have solid lines, and those with dashed lines

have post-transplant mortality that overlaps with the CoP announcement.
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Panel A

Panel B

Figure C.VIII: Impact on post-transplant mortality at different periods

Note: The figure presents the estimated effect on post-transplant mortality at 2-week/6-month/2-year/3-year, obtained

using equation 6 with the instrument Zc and 2003h2 as the reference 6-month window. I cluster standard errors at the

transplant center level. Error bars indicate 95 percent confidence intervals.
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Panel A: 6-months follow-up

Panel B: 1-year follow-up

Figure C.IX: Impact onmaintenance immunosuppressant - tacrolimus and cyclosporine prescription at different follow-

up intervals

Note: The figure presents the estimated effect on tacrolimus and cyclosporine prescription at 6-months and 1-year

follow-up, obtained using equation 6 with the instrument Zc and 2003h2 as the reference 6-month window. I cluster

standard errors at the transplant center level. Error bars indicate 95 percent confidence intervals.
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D Supplementary Tables

Table D.I: Death rates among patients missing follow-up care

Time Period Pre-CoP Post-Announce Post-Implement

Dead within 2 weeks 100.0% 100.0% 100.0%

(N=593) (N=398) (N=357)

Dead within 6 months 92.0% 92.8% 95.3%

(N=3078) (N=1996) (N=1731)

Dead within 1 year 94.0% 95.0% 95.8%

(N=4451) (N=2950) (N=2580)

Notes: This table shows the proportion of patients who missed their follow-up appointments due to death. Death rates

are calculated as the proportion of patients who died within the specified timeframe among those who did not show up

for their scheduled follow-up care.

65



Table D.II: Tranplanted and discarded kidney characteristics pre and post-CoP

Transplanted Discarded

Pre-CoP Post-Ann Post-Impl Pre-CoP Post-Ann Post-Impl

Age 35.6 36.7 37.0 52.5 54.1 52.7

( 17.3) ( 17.1) ( 17.3) ( 17.0) ( 16.2) ( 16.5)

Creatinine Levels 1.1 1.1 1.1 1.4 1.4 1.5

( 1.0) ( 0.7) ( 0.9) ( 1.1) ( 0.9) ( 1.2)

Kidney Risk 0.4 0.4 0.4 0.7 0.8 0.8

( 0.3) ( 0.3) ( 0.3) ( 0.2) ( 0.2) ( 0.2)

Male 59.6% 60.5% 60.9% 52.2% 52.4% 53.3%

( 49.1) ( 48.9) ( 48.8) ( 50.0) ( 49.9) ( 49.9)

White 72.4% 68.6% 68.0% 72.2% 68.5% 69.0%

( 44.7) ( 46.4) ( 46.7) ( 44.8) ( 46.5) ( 46.3)

Death - Stroke 37.8% 36.3% 34.3% 65.9% 65.9% 58.6%

( 48.5) ( 48.1) ( 47.5) ( 47.4) ( 47.4) ( 49.3)

Death - Head Trauma 47.2% 44.9% 41.3% 19.8% 17.1% 17.7%

( 49.9) ( 49.7) ( 49.2) ( 39.9) ( 37.7) ( 38.2)

Hypertension 19.6% 24.1% 25.5% 52.7% 61.6% 60.3%

( 39.7) ( 42.8) ( 43.6) ( 49.9) ( 48.6) ( 48.9)

Total Offers 95.0 61.8 139.9 796.4 470.9 1122.3

(505.2) (259.0) (592.4) (2352.7) (915.9) (2008.0)

Observations 37975 28099 28625 5750 5307 6508

Notes: This table presents means and standard deviations (in parentheses) for kidney donor characteristics. The sample

is split between transplanted and discarded kidneys before and after the CoP announcement and implementation. If

a pair of kidneys were recovered, but only one was transplanted, each would count as an observation in both the

transplanted and discarded columns.
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Table D.III: Tranplant patient characteristics pre and post-CoP

Pre-CoP Post-CoP

Announcement Implementation

Age 47.9 49.3 50.2

( 14.5) ( 15.3) ( 15.3)

White 51.7% 48.7% 47.4%

( 50.0) ( 50.0) ( 49.9)

Years on WL 2.2 2.3 2.4

( 1.9) ( 2.0) ( 2.1)

Completed Univ. 14.2% 15.8% 17.4%

( 34.9) ( 36.5) ( 37.9)

Medicare 60.5% 61.0% 62.7%

( 48.9) ( 48.8) ( 48.4)

Diabetic 31.2% 33.5% 35.7%

( 46.4) ( 47.2) ( 47.9)

On Dialysis 55.9% 75.6% 76.8%

( 49.7) ( 43.0) ( 42.2)

Total Offers 55.9 69.2 95.1

( 72.3) (100.8) (147.7)

Expected Post-TX Survival 31.2 34.9 37.7

( 29.7) ( 30.9) ( 31.9)

Observations 36446 27052 27356

Notes: This table presents means and standard deviations (in parentheses) for transplant patient characteristics. The

three columns cover transplants performed over the pre-CoP (January 2001 - February 2005), post-CoP announcement

(February 2005 - July 2007), and post-CoP implementation (July 2007 - July 2009) periods.
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Table D.IV: Impact on different post-transplant timeline mortality

Post-transplant ≤ 1-year Post-transplant > 1-year

(1) (2) (3) (4) (5)

2-weeks 6-months 1-year 2-years 3-years

Post-Announce -0.01044∗∗∗ -0.02695∗∗∗ -0.02782∗∗ -0.00943 0.00986

(0.00302) (0.00598) (0.01031) (0.01660) (0.02124)

Post-Implement -0.01330∗∗∗ -0.02820∗∗∗ -0.02112∗ -0.00103 0.02895

(0.00383) (0.00727) (0.01061) (0.01601) (0.02201)

Y mean 0.03028 0.08074 0.11767 0.18191 0.24566

F-statistic 57.05134 56.98470 56.76781 56.27769 55.55284

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 87371 83137 78832 70774 62880

Note: This table relates to the analysis in Section 6.1. It presents the estimated effect on the probability of deaths at

different post-transplant timelines, obtained by jointly estimating equations 4 and 5. Each column uses the subsample

of patients whose post-transplant mortality timeline does not overlap with the CoP announcement described in Section

5.3. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, *** p < 0.001
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Table D.V: Impact on acceptance decision across patient subgroups

(1) (2) (3) (4) (5)

Age>65 BMI>30 Prior TX On dialysis Medicare

Post-Ann (Tri) 0.00879 0.00385 0.00461 0.00551 0.00353

(0.00557) (0.00393) (0.00539) (0.00414) (0.00360)

Post-Imp (Tri) 0.00359 0.00536 0.00288 0.00403 0.00928

(0.00648) (0.00417) (0.00645) (0.00509) (0.00527)

Y mean 0.08273 0.08273 0.08273 0.08273 0.08273

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 646983 646983 646983 646983 646983

Note: This table relates to the analysis in section 6.2.1. It presents the estimated effect on the center’s acceptance

decision across different subgroups, obtained from triple differences regression interacted with different patient char-

acteristics included in the risk-adjustment model. I cluster standard errors at the transplant center level. *p < 0.05,
**p < 0.01, *** p < 0.001

Table D.VI: Impact on acceptance decision across kidney subgroups

(1) (2) (3) (4) (5)

Age>65 Diabetic Hypertension Death-Stroke Death-Head Trauma

Post-Ann (Tri) 0.01489∗∗ 0.00708 0.00623 0.00004 -0.00108

(0.00568) (0.00431) (0.00455) (0.00325) (0.00379)

Post-Imp (Tri) 0.00668 0.00390 0.00538 0.00248 -0.00154

(0.00754) (0.00469) (0.00465) (0.00425) (0.00527)

Y mean 0.08273 0.08273 0.08273 0.08273 0.08273

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 646983 646983 646983 646983 646983

Note: This table relates to the analysis in section 6.2.1. It presents the estimated effect on the center’s acceptance

decision across different subgroups, obtained from triple differences regression interacted with different kidney char-

acteristics included in the risk-adjustment model. I cluster standard errors at the transplant center level. *p < 0.05,
**p < 0.01, *** p < 0.001
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Table D.VII: Impact on acceptance decision across non-adjusted patient or kidney subgroups (i)

(1) (2) (3) (4)

Pat - Uni. Grad Pat - Malignant Kid - Cancer Hist. Kid - BMI>30

Post-Ann (Tri) 0.00356 -0.01443 0.00508 0.00582∗

(0.00500) (0.00861) (0.00574) (0.00289)

Post-Imp (Tri) 0.00141 -0.00593 0.01158 -0.00091

(0.00460) (0.00865) (0.00635) (0.00296)

Y mean 0.08273 0.08273 0.08273 0.08273

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 646983 625011 646983 646983

Note: This table relates to the analysis in section 6.2.1. It presents the estimated effect on the center’s acceptance

decision across different subgroups, obtained from triple differences regression interacted with various non-adjusted

patient and kidney characteristics. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, ***
p < 0.001

Table D.VIII: Impact on acceptance decision across non-adjusted patient or kidney subgroups (ii)

(1) (2) (3)

Risky Pat. Risky Kid. Risky Pat. x Kid.

Post-Ann (Tri) 0.00410 0.00851 0.00722

(0.00511) (0.00559) (0.00475)

Post-Imp (Tri) 0.00709 0.00524 0.00652

(0.00475) (0.00696) (0.00493)

Y mean 0.08273 0.08273 0.08273

Fixed Effects Center, 6-months Center, 6-months Center, 6-months

Observations 642699 642699 642699

Note: This table relates to the analysis in section 6.2.1. It presents the estimated effect on the center’s acceptance

decision across different subgroups, obtained from triple differences regression interacted with predetermined patient

and kidney risk measures. I use the kidney donor profile index (KDPI) and estimated post-transplant survival (EPTS)

as measures of kidney and patient risk, respectively. A kidney is risky if KDPI ≥ 0.5, and a patient is risky if

EPTS ≥ 0.5. A patient-kidney pair is considered high-risk if both the patient and the kidney are high-risk. I cluster

standard errors at the transplant center level. *p < 0.05, **p < 0.01, *** p < 0.001
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Table D.IX: Impact on kidney discard

Kidney Discards No. of Patients Offered

(1) (2) (3) (4)

Baseline Risky Kidney Baseline Risky Kidney

Post-Announce 0.00755 -0.00737∗ 18.93656∗∗∗ 4.42829

(0.00424) (0.00331) (4.36242) (4.07778)

Post-Implement -0.00557 -0.01254∗∗∗ -58.35275∗∗∗ -24.85710∗∗∗

(0.00443) (0.00353) (6.74354) (5.99234)

Post-Announce (Tri) 0.03575∗∗∗ 37.87207∗∗∗

(0.00956) (9.02274)

Post-Implement (Tri) 0.01550 -75.35143∗∗∗

(0.00980) (13.64219)

Y mean 0.15008 0.15008 222.44305 222.44305

Fixed Effects DSA, 6-months DSA, 6-months DSA, 6-months DSA, 6-months

Observations 76304 76304 76304 76304

Note: This table relates to the analysis in Section 6.2.2. It presents the estimated effect on kidney discard, obtained by

estimating equation 8. I use the kidney donor profile index (KDPI) as a measure of kidney risk. A kidney is risky if

KDPI ≥ 0.5. I cluster standard errors at the donor service area level. *p < 0.05, **p < 0.01, *** p < 0.001
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Table D.X: Impact on the prescription of maintenance immunosuppressants - Cyclosporine

(1) (2) (3) (4)

2-weeks 6-months 1-year 2-years

Post-Announce -0.05704∗ -0.04914∗ -0.05119∗ -0.05327

(0.02801) (0.02351) (0.02410) (0.02770)

Post-Implement -0.08137∗ -0.06742∗ -0.06505∗ -0.06560∗

(0.03308) (0.02972) (0.02988) (0.03073)

Y mean 0.15978 0.14875 0.14809 0.11643

F-statistic 55.20009 54.06380 51.35394 50.61915

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 82768 72703 66157 55193

Note: This table relates to the analysis in Section 6.3.1. It presents the estimated effect on the probability of prescribing

cyclosporine at different follow-up timelines, obtained by jointly estimating equations 4 and 5. Each column uses the

subsample of patients whose post-transplant mortality timeline does not overlap with the CoP announcement described

in Section 5.3. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, ***p < 0.001.

Table D.XI: Impact on the prescription of maintenance immunosuppressants - Tacrolimus

(1) (2) (3) (4)

2-weeks 6-months 1-year 2-years

Post-Announce 0.05705 0.08183∗∗ 0.06288∗ 0.10958∗

(0.02926) (0.02933) (0.03021) (0.05171)

Post-Implement 0.10307∗∗ 0.14781∗∗ 0.10432∗∗ 0.13865∗

(0.03673) (0.05245) (0.03346) (0.05935)

Y mean 0.75790 0.69038 0.76061 0.61734

F-statistic 55.20009 54.06380 51.35394 50.61915

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 82768 72703 66157 55193

Note: This table relates to the analysis in Section 6.3.1. It presents the estimated effect on the probability of prescribing

tacrolimus at different follow-up timelines, obtained by jointly estimating equations 4 and 5. Each column uses the

subsample of patients whose post-transplant mortality timeline does not overlap with the CoP announcement described

in Section 5.3. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, ***p < 0.001.
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Table D.XII: Impact on the prescription of maintenance immunosuppressants

(1) (2)

Cyclosporine Tacrolimus

Post-Announce -0.00620∗∗ 0.01440∗∗∗

(0.00218) (0.00266)

Y mean 0.21836 0.67635

Fixed Effects Patients, 6-months Patients, 6-months

Observations 100543 100543

Note: This table relates to the analysis in Section 6.3.1. It presents the estimated effect on the probability of prescribing

cyclosporine or tacrolimus at different follow-up timelines, obtained by estimating equation 7. Each column uses the

subsample of patients whose post-transplant mortality timeline overlaps with the CoP announcement as described in

Section 5.3. I cluster standard errors at the patient level. *p < 0.05, **p < 0.01, ***p < 0.001.
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Table D.XIII: Impact on deaths by kidney rejections

(1) (2) (3) (4)

2-weeks 6-months 1-year 2-years

Post-Announce -0.00004 -0.00047 -0.00182 0.00055

(0.00087) (0.00154) (0.00176) (0.00251)

Post-Implement -0.00163 -0.00456∗ -0.00528∗ -0.00432

(0.00115) (0.00216) (0.00250) (0.00292)

Y mean 0.00287 0.00845 0.01256 0.01903

F-statistic 55.26085 55.21618 55.02377 54.60244

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 82266 78032 73727 65669

Note: This table relates to the analysis in Section 6.3.1. It presents the estimated effect on the probability of death due

to kidney rejection at different post-transplant timelines, obtained by jointly estimating equations 4 and 5. Each column

uses the subsample of patients whose post-transplant mortality timeline does not overlap with the CoP announcement

described in Section 5.3. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, *** p < 0.001

Table D.XIV: Impact on deaths by viral infections

(1) (2) (3) (4)

2-weeks 6-months 1-year 2-years

Post-Announce -0.00438∗ -0.00982∗∗ -0.01079∗∗ -0.01200∗∗

(0.00203) (0.00334) (0.00383) (0.00447)

Post-Implement -0.00627∗∗∗ -0.01077∗∗∗ -0.01214∗∗∗ -0.01433∗∗∗

(0.00179) (0.00272) (0.00323) (0.00368)

Y mean 0.00959 0.01922 0.02336 0.02834

F-statistic 55.26085 55.21618 55.02377 54.60244

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 82266 78032 73727 65669

Note: This table relates to the analysis in Section 6.3.2. It presents the estimated effect on the probability of death by

viral infection at different post-transplant timelines, obtained by jointly estimating equations 4 and 5. Each column

uses the subsample of patients whose post-transplant mortality timeline does not overlap with the CoP announcement

described in Section 5.3. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, *** p < 0.001
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Table D.XV: Impact on non-targeted patient outcomes (i)

(1) (2) (3) (4)

Hospitalization Acute Kidney Rejection Dialysis Diabetes

Post-Announce 0.03724∗ 0.01252 0.00003 0.00921

(0.01759) (0.00955) (0.00144) (0.01907)

Post-Implement 0.03701 0.01316 0.00090 -0.00818

(0.02369) (0.01079) (0.00128) (0.01799)

Y mean 0.22096 0.03613 0.00394 0.10450

F-statistic 51.35394 51.35394 51.35394 51.35394

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 66157 66157 66157 66157

Note: This table relates to the analysis in sections 6.3.2 and 7.2. It presents the estimated effect on non-targeted

patient outcomes, obtained by jointly estimating equations 4 and 5. Each column represents a different patient outcome

measured during the patient’s 1-year follow-up. I cluster standard errors at the transplant center level. *p < 0.05,
**p < 0.01, *** p < 0.001

Table D.XVI: Impact on non-targeted patient outcomes (ii)

(1) (2) (3) (4)

Malignancy Kidney Failure Creatinine Positive CMV

Post-Announce -0.00204 -0.00028 -0.01561 -0.00979

(0.00145) (0.00064) (0.01571) (0.01817)

Post-Implement 0.00085 0.00062 -0.04744∗ 0.00008

(0.00192) (0.00063) (0.01907) (0.02646)

Y mean 0.00710 0.00093 1.49528 0.63007

F-statistic 51.35394 51.35394 50.60337 51.35394

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 66157 66157 65006 66157

Note: This table relates to the analysis in sections 6.3.2 and 7.2. It presents the estimated effect on non-targeted

patient outcomes, obtained by jointly estimating equations 4 and 5. Each column represents a different patient outcome

measured during the patient’s 1-year follow-up. I cluster standard errors at the transplant center level. *p < 0.05,
**p < 0.01, *** p < 0.001
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Table D.XVII: Impact of compulsory documentation on mortality and transplant decision

Post-transplant mortality Pat-Kid Acceptance

(1) (2) (3) (4)

Teaching Center Large Center Teaching Center Large Center

Post-Ann (Tri) 0.00294 -0.00154 -0.00392 0.00296

(0.01474) (0.01833) (0.00869) (0.00840)

Post-Imp (Tri) -0.00543 -0.02449 0.00313 -0.00181

(0.01528) (0.01984) (0.01037) (0.01195)

Y mean 0.11904 0.11904 0.08273 0.08273

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 74175 74175 646983 646983

Note: This table relates to the analysis in section 7.1.1. It presents the estimated effects on post-transplant mortality/

the center’s acceptance decision across different subgroups, obtained from triple-differences regression interacted with

different administrative capacities. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, ***
p < 0.001
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Table D.XVIII: Impact on acceptable donor criteria (i)

(1) (2) (3) (4)

Min. Age Max. Age HLA Mismatch Creatinine

Post-Announce 0.02900 -0.53994∗∗ 0.00647 0.63170

(0.02441) (0.16927) (0.01274) (0.67081)

Post-Implement 0.04581 1.04754∗∗ 0.00863 3.41333∗∗

(0.06314) (0.36648) (0.01437) (1.27404)

Y mean 1.23015 80.92366 5.94159 21.81707

Fixed Effects Patient, Quarters Patient, Quarters Patient, Quarters Patient, Quarters

Observations 43723 43723 43025 43723

Note: This table relates to the analysis in section 7.1.2. It presents the estimated effect on centers setting more stringent

donor criteria, obtained by estimating equation 7. Each column represents a different modifiable donor criterion. I

cluster standard errors at the patient level. *p < 0.05, **p < 0.01, *** p < 0.001

Table D.XIX: Impact on acceptable donor criteria (ii)

(1) (2) (3) (4)

Hypertension Cold Ischemic Time Warm Ischemic Time Expanded Criteria

Post-Announce -0.00006 2.32549∗ -1.10574∗ 0.00396

(0.00007) (1.11263) (0.55112) (0.00735)

Post-Implement -0.00039 9.47421∗∗∗ 0.29125 -0.02113∗

(0.00039) (1.89632) (1.09701) (0.01041)

Y mean 0.99943 68.08462 65.95272 0.37520

Fixed Effects Patient, Quarters Patient, Quarters Patient, Quarters Patient, Quarters

Observations 43723 43723 35696 43723

Note: This table relates to the analysis in section 7.1.2. It presents the estimated effect on centers setting more stringent

donor criteria, obtained by estimating equation 7. Each column represents a different modifiable donor criterion. I

cluster standard errors at the patient level. *p < 0.05, **p < 0.01, *** p < 0.001
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Table D.XX: Impact on admitted patient characteristics (i)

(1) (2) (3) (4) (5)

Age White No education Working Medicare

Post-Announce -0.11703 -0.00313 -0.00085 -0.00905 0.01535

(0.15165) (0.00413) (0.01724) (0.00556) (0.01056)

Post-Implement -0.15069 -0.00183 -0.02809 0.00545 0.00568

(0.16484) (0.00536) (0.02463) (0.00859) (0.01156)

Y mean 49.16298 0.48686 0.15842 0.18485 0.48500

Fixed Effects Centers, 6-months Centers, 6-months Centers, 6-months Centers, 6-months Centers, 6-months

Observations 261313 261313 261313 261313 261313

Note: This table relates to the analysis in section 7.1.3. It presents the estimated effect on admitted patient characteris-

tics, obtained by estimating equation 5. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01,
*** p < 0.001

Table D.XXI: Impact on admitted patient characteristics (ii)

(1) (2) (3) (4)

BMI Diabetic On dialysis Blood type O

Post-Announce -0.13743∗∗ -0.00008 -0.00236 0.12877

(0.05193) (0.00606) (0.00874) (0.31113)

Post-Implement -0.18323∗∗ -0.00280 0.00498 0.36779

(0.06640) (0.00779) (0.00975) (0.33629)

Y mean 27.62767 0.39092 0.76889 48.56857

Fixed Effects Centers, 6-months Centers, 6-months Centers, 6-months Centers, 6-months

Observations 253966 261313 261313 261313

Note: This table relates to the analysis in section 7.1.3. It presents the estimated effect on admitted patient characteris-

tics, obtained by estimating equation 5. I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01,
*** p < 0.001
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Table D.XXII: Impact on the rate of CMV testing

(1) (2) (3) (4)

2-weeks 6-months 1-year 2-years

Post-Announce -0.01628 0.03586 0.03447 0.05219

(0.01615) (0.02627) (0.02904) (0.04475)

Post-Implement 0.00754 0.02102 0.05379 0.02890

(0.02026) (0.03059) (0.05436) (0.05679)

Y mean 0.94816 0.11720 0.24254 0.28579

F-statistic 55.20396 54.06380 51.35394 50.61915

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 83118 72703 66157 55193

Note: This table examines the proposed detection channel in section 7.1.4. It presents the estimated effect on the

probability of centers performing a CMV test at different follow-up timelines, obtained by jointly estimating equations

4 and 5. Each column uses the subsample of patients whose post-transplant mortality timeline does not overlap with

the CoP announcement described in Section 5.3. I cluster standard errors at the transplant center level. *p < 0.05,
**p < 0.01, ***p < 0.001.
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Table D.XXIII: Impact on patient waitlist experience

Time on waitlist Removed from waitlist

(1) (2) (3) (4)

OLS IV OLS IV

Post-Ann -0.12275 -0.26685∗∗ 0.00238 0.00464

(0.09087) (0.09936) (0.00554) (0.00586)

Y mean 2.79544 2.79544 0.09271 0.09271

F-statistic 134.14564 127.64148

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 107249 107252 186374 186376

Note: This table relates to the analysis in section 7.3. It presents the estimated effect on transplant wait time and

waitlist mortality, obtained by estimating equations 4 and 5. I cluster standard errors at the transplant center level.

*p < 0.05, **p < 0.01, *** p < 0.001
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Table D.XXIV: Full patient sample

Post-Transplant Death Tacrolimus Prescription Cyclosporine Prescription

2-weeks after transplant

Post-Ann -0.003 0.049** -0.048**

( 0.002) ( 0.022) ( 0.022)

Post-Imp -0.006** 0.070** -0.061**

( 0.002) ( 0.029) ( 0.024)

6-months after transplant

Post-Ann -0.011*** 0.060*** -0.047***

( 0.004) ( 0.019) ( 0.017)

Post-Imp -0.013** 0.072*** -0.050**

( 0.005) ( 0.027) ( 0.019)

1-year after transplant

Post-Ann -0.011* 0.081** -0.027

( 0.006) ( 0.038) ( 0.017)

Post-Imp -0.011* 0.106** -0.029

( 0.006) ( 0.041) ( 0.018)

Notes: This table relates to the analysis in section 7.3. It presents the estimated effect on post-transplant death, as well

as the prescription of tacrolimus and cyclosporine, obtained by estimating equations 4, 5 with the full patient sample.

I cluster standard errors at the transplant center level. *p < 0.05, **p < 0.01, *** p < 0.001
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Table D.XXV: Transplant centers have perfect foresight

Post-Transplant Death Tacrolimus Prescription Cyclosporine Prescription

2-weeks after transplant

Post-Ann -0.019*** 0.111 -0.114

( 0.005) ( 0.083) ( 0.083)

Post-Imp -0.025*** 0.106 -0.138

( 0.006) ( 0.110) ( 0.092)

6-months after transplant

Post-Ann -0.052*** 0.110 -0.067

( 0.012) ( 0.075) ( 0.067)

Post-Imp -0.056*** 0.127 -0.079

( 0.013) ( 0.086) ( 0.082)

1-year after transplant

Post-Ann -0.050** -0.059 -0.030

( 0.022) ( 0.102) ( 0.076)

Post-Imp -0.039* -0.046 -0.042

( 0.022) ( 0.095) ( 0.081)

Notes: This table relates to the analysis in section 7.2. It presents the estimated effect on post-transplant death, as well

as the prescription of tacrolimus and cyclosporine, obtained by estimating equations 4 and 5, but replacing ρc with
the flagged status of the center in 2007h2 when Medicare implemented CoP. I cluster standard errors at the transplant

center level. *p < 0.05, **p < 0.01, *** p < 0.001
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Table D.XXVI: Transplant centers have time-varying flagging beliefs

Post-Transplant Death Tacrolimus Prescription Cyclosporine Prescription

2-weeks after transplant

Post-Ann -0.001 0.014*** -0.011***

( 0.001) ( 0.002) ( 0.002)

Post-Imp -0.000 0.024*** -0.013***

( 0.001) ( 0.003) ( 0.002)

6-months after transplant

Post-Ann -0.005*** 0.014*** -0.012***

( 0.002) ( 0.003) ( 0.002)

Post-Imp -0.004* 0.017*** -0.011***

( 0.002) ( 0.003) ( 0.003)

1-year after transplant

Post-Ann -0.006*** 0.020*** -0.006***

( 0.002) ( 0.003) ( 0.002)

Post-Imp -0.003 0.034*** -0.006**

( 0.003) ( 0.004) ( 0.003)

Notes: This table relates to the analysis in section 7.3 . It presents the estimated effect on post-transplant death, as

well as the prescription of tacrolimus and cyclosporine, obtained by estimating equations 4 and 5, but replacing the ρc
with time-varying flagging beliefs. I use robust standard errors. *p < 0.05, **p < 0.01, *** p < 0.001
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