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Appendices

A Supplementary Figures

Figure A.I: An illustration of the rolling 2.5-year cohort for CoP

Note: The January 2008 submission (black box) consists of transplants from July 1, 2004, to December 31, 2006 (black line).

Similarly, the July 2008 submission (red box) contains transplants from January 1, 2005, and June 31, 2007 (red line).

2



Figure A.II: An example of a transplant center’s CoP report

Note: This table is fromDickinson et al. (2008) and provides an example of a center that did not get penalized for poor performance.

The CoP conditions from Section II can be calculated from this table. For example, Condition 1 is in line 8 (e.g.,O/E = 1.3 < 1.5);
Condition 2 is calculated by taking the difference between lines 6 and 7 (e.g., O − E = 2.52 < 3); Condition 3 is in line 10 (e.g.,
Pr(O = E) = 0.469 > 0.05).
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2003 2004 2005 2006 2007

Figure A.III: Non-overlapping (solid) and overlapping (dashed) patients

Note: This figure highlights my regression subsample as described in the section on research design. The length of the lines indicates

the patient’s post-transplant mortality timeline and varies according to the outcome of interest. Patients whose post-transplant

mortality timeline does not overlap with the CoP announcement have solid lines, and those with dashed lines have post-transplant

mortality that overlaps with the CoP announcement.
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Panel A

Panel B

Figure A.IV: Impact on post-transplant mortality at different periods

Note: The figure presents the estimated effect on post-transplant mortality at 2-week/6-month/2-year/3-year, obtained using equa-

tion 7 with the instrument Zc and 2003h2 as the reference 6-month window. I cluster standard errors at the transplant center level.

Error bars indicate 95 percent confidence intervals.
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Panel A: 6-months follow-up

Panel B: 1-year follow-up

Figure A.V: Impact on maintenance immunosuppressant - tacrolimus and cyclosporine prescription at different follow-up intervals

Note: The figure presents the estimated effect on cyclosporine and tacrolimus prescription at 6-months and 1-year follow-up,

obtained using equation 7 with the instrument Zc and 2003h2 as the reference 6-month window. I cluster standard errors at the

transplant center level. Error bars indicate 95 percent confidence intervals.
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B Supplementary Tables

Table B.I: Death rates among patients missing follow-up care

Time Period Pre-CoP Post-Announce Post-Implement

Dead within 2 weeks 100.0% 100.0% 100.0%

(N=593) (N=398) (N=357)

Dead within 6 months 92.0% 92.8% 95.3%

(N=3,078) (N=1,996) (N=1,731)

Dead within 1 year 94.0% 95.0% 95.8%

(N=4,451) (N=2,950) (N=2,580)

Notes: This table shows the proportion of patients who missed their follow-up appointments due to death. Death rates are calculated

as the proportion of patients who died within the specified timeframe among those who did not show up for their scheduled follow-

up care.
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Table B.II: Impact of compulsory documentation on mortality and transplant decision

Post-transplant mortality Pat-Kid Acceptance

(1) (2) (3) (4)

Teaching Center Large Center Teaching Center Large Center

Post-Ann (Tri) 0.00294 -0.00154 -0.00403 0.00284

(0.01474) (0.01833) (0.00876) (0.00842)

Post-Imp (Tri) -0.00543 -0.02449 0.00334 -0.00212

(0.01528) (0.01984) (0.01043) (0.01201)

Y mean 0.11904 0.11904 0.08273 0.08273

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 74,175 74,175 646,983 646,983

Note: This table relates to the analysis in the section on robustness checks - alternative mechanisms. It presents the estimated

effects on post-transplant mortality/ the center’s acceptance decision across different subgroups, obtained from triple-differences

regression interacted with different administrative capacities. I cluster standard errors at the transplant center level.
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Table B.III: Impact on acceptable donor criteria (i)

(1) (2) (3) (4)

Min. Age Max. Age HLA Mismatch Creatinine

Post-Announce 0.02900 -0.53994 0.00647 0.63170

(0.02441) (0.16927) (0.01274) (0.67081)

Post-Implement 0.04581 1.04754 0.00863 3.41333

(0.06314) (0.36648) (0.01437) (1.27404)

Y mean 1.23015 80.92366 5.94159 21.81707

Fixed Effects Patient, Quarters Patient, Quarters Patient, Quarters Patient, Quarters

Observations 43,723 43,723 43,025 43,723

Note: This table relates to the analysis in the section on robustness checks - alternative mechanisms. It presents the estimated effect

on centers setting more stringent donor criteria, obtained by estimating equation 8. Each column represents a different modifiable

donor criterion. I cluster standard errors at the patient level.

Table B.IV: Impact on acceptable donor criteria (ii)

(1) (2) (3) (4)

Hypertension Cold Ischemic Time Warm Ischemic Time Expanded Criteria

Post-Announce -0.00006 2.32549 -1.10574 0.00396

(0.00007) (1.11263) (0.55112) (0.00735)

Post-Implement -0.00039 9.47421 0.29125 -0.02113

(0.00039) (1.89632) (1.09701) (0.01041)

Y mean 0.99943 68.08462 65.95272 0.37520

Fixed Effects Patient, Quarters Patient, Quarters Patient, Quarters Patient, Quarters

Observations 43,723 43,723 35,696 43,723

Note: This table relates to the analysis in the section on robustness checks - alternative mechanisms. It presents the estimated effect

on centers setting more stringent donor criteria, obtained by estimating equation 8. Each column represents a different modifiable

donor criterion. I cluster standard errors at the patient level.
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Table B.V: Impact on admitted patient characteristics (i)

(1) (2) (3) (4) (5)

Age White No education Working Medicare

Post-Announce -0.11703 -0.00313 -0.00084 -0.00905 0.01527

(0.15165) (0.00413) (0.01724) (0.00556) (0.01053)

Post-Implement -0.15069 -0.00183 -0.02811 0.00546 0.00573

(0.16484) (0.00536) (0.02463) (0.00859) (0.01156)

Y mean 49.16298 0.48686 0.15844 0.18484 0.48499

Fixed Effects Centers, 6-months Centers, 6-months Centers, 6-months Centers, 6-months Centers, 6-months

Observations 261,313 261,313 261,313 261,313 261,313

Note: This table relates to the analysis in the section on robustness checks - alternative mechanisms. It presents the estimated effect

on admitted patient characteristics, obtained by estimating equation 6. I cluster standard errors at the transplant center level.

Table B.VI: Impact on admitted patient characteristics (ii)

(1) (2) (3) (4)

BMI Diabetic On dialysis Blood type O

Post-Announce -0.13785 -0.00008 -0.00236 0.12877

(0.05193) (0.00606) (0.00874) (0.31113)

Post-Implement -0.18364 -0.00280 0.00498 0.36779

(0.06640) (0.00779) (0.00975) (0.33629)

Y mean 27.62768 0.39092 0.76889 48.56857

Fixed Effects Centers, 6-months Centers, 6-months Centers, 6-months Centers, 6-months

Observations 253,962 261,313 261,313 261,313

Note: This table relates to the analysis in the section on robustness checks - alternative mechanisms. It presents the estimated effect

on admitted patient characteristics, obtained by estimating equation 6. I cluster standard errors at the transplant center level.
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Table B.VII: Impact on the rate of CMV testing

(1) (2) (3) (4)

2-weeks 6-months 1-year 2-years

Post-Announce -0.01628 0.03586 0.03447 0.05219

(0.01615) (0.02627) (0.02904) (0.04475)

Post-Implement 0.00754 0.02102 0.05379 0.02890

(0.02026) (0.03059) (0.05436) (0.05679)

Y mean 0.94816 0.11720 0.24254 0.28579

F-statistic 55.20396 54.06380 51.35394 50.61915

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 83,118 72,703 66,157 55,193

Note: This table examines the proposed detection channel in in the section on robustness checks - alternative mechanisms. It

presents the estimated effect on the probability of centers performing a CMV test at different follow-up timelines, obtained by

jointly estimating equations 5 and 6. Each column uses the subsample of patients whose post-transplant mortality timeline does not

overlap with the CoP announcement described in the section on research design. I cluster standard errors at the transplant center

level.
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Table B.VIII: Impact on patient waitlist experience

Time on waitlist Removed from waitlist

(1) (2) (3) (4)

OLS IV OLS IV

Post-Ann -0.12311 -0.26940 0.00239 0.00464

(0.09094) (0.09930) (0.00554) (0.00586)

Y mean 2.79529 2.79529 0.09270 0.09270

F-statistic 134.16039 127.64035

Fixed Effects Center, 6-months Center, 6-months Center, 6-months Center, 6-months

Observations 107,244 107,247 186,364 186,366

Note: This table relates to the analysis in the section on robustness checks - non-targeted outcomes. It presents the estimated effect

on transplant wait time and waitlist mortality, obtained by estimating equations 5 and 6. I cluster standard errors at the transplant

center level.
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Table B.IX: Full patient sample

Post-Transplant Death Tacrolimus Prescription Cyclosporine Prescription

2-weeks after transplant

Post-Ann -0.003 0.049 -0.048

( 0.002) ( 0.022) ( 0.022)

Post-Imp -0.006 0.070 -0.061

( 0.002) ( 0.029) ( 0.024)

6-months after transplant

Post-Ann -0.011 0.060 -0.047

( 0.004) ( 0.019) ( 0.017)

Post-Imp -0.013 0.072 -0.050

( 0.005) ( 0.027) ( 0.019)

1-year after transplant

Post-Ann -0.011 0.081 -0.027

( 0.006) ( 0.038) ( 0.017)

Post-Imp -0.011 0.106 -0.029

( 0.006) ( 0.041) ( 0.018)

Notes: This table relates to the analysis in the section on robustness checks - alternative specifications. It presents the estimated

effect on post-transplant death, as well as the prescription of tacrolimus and cyclosporine, obtained by estimating equations 5 and 6

with the full patient sample. I cluster standard errors at the transplant center level.
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Table B.X: Transplant centers have perfect foresight

Post-Transplant Death Tacrolimus Prescription Cyclosporine Prescription

2-weeks after transplant

Post-Ann -0.019 0.111 -0.114

( 0.005) ( 0.083) ( 0.083)

Post-Imp -0.025 0.106 -0.138

( 0.006) ( 0.110) ( 0.092)

6-months after transplant

Post-Ann -0.052 0.110 -0.067

( 0.012) ( 0.075) ( 0.067)

Post-Imp -0.056 0.127 -0.079

( 0.013) ( 0.086) ( 0.082)

1-year after transplant

Post-Ann -0.050 -0.059 -0.030

( 0.022) ( 0.102) ( 0.076)

Post-Imp -0.039 -0.046 -0.042

( 0.022) ( 0.095) ( 0.081)

Notes: This table relates to the analysis in the section on robustness checks - alternative specifications. It presents the estimated

effect on post-transplant death, as well as the prescription of tacrolimus and cyclosporine, obtained by estimating equations 5 and

6, but replacing ρc with the penalty status of the center in 2007h2 when Medicare implemented CoP. I cluster standard errors at the

transplant center level.
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Table B.XI: Transplant centers have time-varying penalty beliefs

Post-Transplant Death Tacrolimus Prescription Cyclosporine Prescription

2-weeks after transplant

Post-Ann -0.001 0.014 -0.011

( 0.001) ( 0.002) ( 0.002)

Post-Imp -0.000 0.024 -0.013

( 0.001) ( 0.003) ( 0.002)

6-months after transplant

Post-Ann -0.005 0.014 -0.012

( 0.002) ( 0.003) ( 0.002)

Post-Imp -0.004 0.017 -0.011

( 0.002) ( 0.003) ( 0.003)

1-year after transplant

Post-Ann -0.006 0.020 -0.006

( 0.002) ( 0.003) ( 0.002)

Post-Imp -0.003 0.034 -0.006

( 0.003) ( 0.004) ( 0.003)

Notes: This table relates to the analysis in the section on robustness checks - alternative specifications. It presents the estimated

effect on post-transplant death, as well as the prescription of tacrolimus and cyclosporine, obtained by estimating equations 5 and

6, but replacing the ρc with time-varying penalty beliefs. I use robust standard errors.
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C Stylized model of center behavior without kidney choices

This section provides the proof for Propositions 1 and 2 in themain text. The center chooses its transplant

decision A(x̃) and post-transplant care q(x) to maximize its expected payoff:

max
A(x̃),q(x)

∫
x̃
A(x̃)

∫
x

Π(x,q(x))︷ ︸︸ ︷ρ
center profit︷ ︸︸ ︷

[π + αq(x)] + (1− ρ)

patient utility︷ ︸︸ ︷[
xq(x)− γ

2
q2(x)

] p(x|x̃)dxdF (x̃)

s.t.

∫
x̃
A(x̃)

[∫
x
P (x, q(x))p(x|x̃)dx

]
dF (x̃) ≤ τ

(C.1)

We solve the maximization problem via backwards induction.

A Solving for q∗(x)

Let λ ≥ 0 be the Lagrange multiplier on the constraint. Define the Lagrangian:

L =

∫
x̃
A(x̃)

∫
x

[
Π(x, q(x))

]
p(x|x̃)dx dF (x̃) − λ

[∫
x̃
A(x̃)

∫
x
P (x, q(x))p(x|x̃)dxdF (x̃)− τ

]
.

Step 1: If the constraint is slack (λ = 0). For each x, we differentiate Π(x, q(x)) with respect to q(x):

ρα+ (1− ρ)
[
x− γ q(x)

]
= 0 =⇒ (1− ρ) γ q(x) = ρα+ (1− ρ)x.

Hence

quncon(x) =
ρα+ (1− ρ)x

(1− ρ) γ
.

Step 2: If the constraint binds (λ > 0). For each x, we need

∂L
∂q

=

∫
A(x̃)

∂Π(.)

∂q
p(x|x̃)dxdF (x̃)− λ

∫
A(x̃)

∂P (.)

∂q
p(x|x̃)dF (x̃) = 0

where

∂

∂q

Π(x,q(x))︷ ︸︸ ︷{
ρ(π + α q(x)) + (1− ρ)

[
x q(x)− γ

2 q
2(x)

]}
= ρα+ (1− ρ)

[
x− γ q

]
.

and

∂

∂q(x)

P (x,q(x))︷ ︸︸ ︷[
1− Φ

(x+q(x)
σ

)]
= −φ

(
x+q(x)

σ

) 1

σ
,
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Rearrange for q∗(x):

(1− ρ) γ q∗(x) = ρα+ (1− ρ)x+ λ
1

σ
φ
(
x+q∗(x)

σ

)
.

Thus we have the implicit solution:

q∗(x) =
ρα+ (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σ
φ
(
x+q∗(x)

σ

)
. (C.2)

If λ = 0, we revert to the unconstrained optimum. Otherwise, q∗(x) exceeds the unconstrained level,

reflecting a desire to reduce mortality.

B Solving for the acceptance rule A(x̃)

Define the net benefit function, NB(x̃)

NB(x̃) =

∫
Π(x, q(x))p(x|x̃)dx− λ

∫
P (x, q(x))p(x|x̃)dx

Since the posterior distribution of p(x|x̃) is increasing in x̃, NB(x̃) is a monotonic function of x̃, A∗(x̃)

takes the form of a cutoff strategy:

A∗(x̃) =

1 if x̃ ≥ t∗

0 if x̃ < t∗
(C.3)

where t∗ is such that NB(t∗) = 0. This completes the proof for proposition 1.

C Comparative Statics: Effect of Decreasing τ

As τ decreases, the regulatory constraint tightens, and the Lagrange multiplier λ increases. This forces

the center to reduce the product

(# transplanted)× (# expected deaths).

They can do this in two ways:

• Raise t∗ (fewer transplants). Since

NB(x̃) =

∫
Π(x, q(x))p(x|x̃)dx− λ

∫
P (x, q(x))p(x|x̃)dx

increases in x̃, a higher threshold means fewer people qualify for a transplant.

• Raise q∗ (improve post-transplant care). From

q∗(x) =
ρα+ (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σ
φ
(
x+q∗(x)

σ

)
,
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a larger λ makes q∗(x) bigger for each x—the center “overspends” on care (relative to the uncon-

strained level) to reduce mortality.

This completes the proof for proposition 2.
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D Stylized model of center behavior with kidney choices

In this section, I formalize the transplant center’s incentives and explore how CoP affects decision-

making. I present a stylizedmodel where the center observes a noisy signal of patient health and then chooses

the transplant eligibility threshold, the kidney type, and the amount of post-transplant care. The center must

balance the tradeoffs between profit, patient welfare, and compliance with CoP constraints. Specifically, the

center considers the revenue from transplants and post-transplant care, the relative scarcity of good kidneys,

and the regulatory penalties from high patient mortality. The model delivers three predictions about the cen-

ter’s response to CoP implementation. First, CoP raises the marginal cost of each transplant by increasing

the penalty for poor outcomes, leading centers to reduce transplants. Second, CoP’s stricter death constraints

increase the marginal benefit of the safer, “expensive” good kidney, resulting in a shift away from bad kid-

neys. Third, by penalizing poor outcomes, CoP incentivizes centers to increase post-transplant care despite

its cost. In subsequent analysis, I model patient mortality in my setting, describe the center’s objective func-

tion, and characterize the optimal transplant threshold, kidney choice, and post-transplant care. Finally, I

provide comparative statics on key parameters and present proofs in the Appendix. Figure D.VI illustrates

the center’s timeline and decision-making.

Stage 1

Observe: signal, x̃

Choice: accept/de-

cline, A(x̃)

Stage 2

Choice: kidney, k(x̃)

Stage 3

Observe: health, x

Choice: post-

transplant care, q(.)

Stage 4

Observe: death rate,

P (x, k(.), q(.))

and receive payments

Figure D.VI: Timeline of the center behavior

A Setup

Patient health is denoted as x, where x ∼ N(µx, σ
2
x)

1. However, when deciding whether to transplant,

centers only observe a noisy signal of patient health, x̃ = x + u, where u ∼ N(0, σ2
u) is independent of

x. Thus, x̃ is an unbiased signal for patient health x. Next, the center matches the patient with the good

(g) or bad (b) kidney. The good kidney is less risky (σg < σb). After the transplant, centers observe

x and decide on post-transplant care q(x, k). Transplant patients die if the latent variable y > 0, where

y = εk − x− q(x, k) and εk ∼ N(0, σ2
k). εk is a normally distributed idiosyncratic shocks with mean 0 and

variance σ2
k. Let the likelihood that a patient with health x, kidney k, and post-transplant care q(x, k) die be

P (x, k, q(x, k)) = 1−Φ
(
q(x,k)+x

σk

)
, which is decreasing in q and x: more post-transplant care or healthier

patient reduces the likelihood of transplant deaths. Similarly, the good kidney reduces mortality due to its

1Patients with higher x are deemed healthier and more suitable for transplant(OPTN, 2023).
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lower variance σ2
g . Conditional on transplant decision, kidney choice and post-transplant care, the center

expects
∫
x̃A(x̃)

∫
x P (x, k, q(x, k))p(x|x̃)dF (x̃) patients to die, where p(x|x̃) is the posterior distribution

of x given x̃ and can be derived with Bayes’ rule.

I follow Clemens and Gottlieb (2014); Dickstein (2017); Alexander (2020); Shi (2023) and model the

center’s objective function as a weighted combination of profit and concern for patient utility. The weight

placed on profit is ρ and can be interpreted as the center’s belief in punishment. In my setting, the center

becomes more altruistic and places more weight on patient utility when the likelihood of punishment is low

(i.e., low ρ). CMS pays the center a fixed reimbursement, π for each transplant, and a reimbursement rate α

for each unit of post-transplant care, q(x, k). Thus, the center profit is π + αq(x, k). A center’s concern for

patient welfare can be understood as altruism on behalf of the patient or as the center acting to preserve its

reputation (Alexander, 2020).

The patient’s utility from post-transplant care is concave in q(x, k), reflecting diminishing returns to

care. Healthier patients (higher x) derive greater benefits from transplants, but excessive care imposes costs

due to coinsurance or opportunity costs on patient’s time (Senanayake et al., 2020). The patient also faces

a waiting cost of g to receive a good kidney, reflecting the scarcity of good kidneys. The patient receives

zero if centers do not perform a transplant. The center maximizes utility and chooses A(x̃), k(x̃), q(x, k) to

maximize a weighted average of their profit and the patient’s utility from transplant2:

max
A(x̃),k(x̃)∈{g,b},q(x,k)

∫
x̃
A(x̃)

∫
x

ρ
center profit︷ ︸︸ ︷
[π + αq(.)]+(1− ρ)

patient utility︷ ︸︸ ︷[
xq(.)− γ

2
q2(.)− 1{k=g}g

] p(x|x̃)dxdF (x̃)

s.t.

”small center discount”︷ ︸︸ ︷∫
x̃
A(x̃)

”not too many deaths”︷ ︸︸ ︷∫
x
P (x, k, q(.))p(x|x̃)dx dF (x̃) ≤ τ

(D.1)

τ is the CoP limit, and the rest of the terms in the constraint reflect the CoP conditions in Section 2.4.∫
x P (x, k, q(x, k))p(x|x̃)dx mimics conditions 1 and 2: there cannot be too many post-transplant deaths.

However, even if it does, the center is exempted if condition 3 fails (i.e., the sample size is so small that

differences between observed and expected deaths are statistically insignificant).
∫
x̃A(x̃)dF (x̃) mimics

condition 3 and serves as a scaling factor that makes it less likely for small centers to exceed the CoP limit,

τ .

Intuitively, the center balances competing incentives. On one hand, it seeks to maximize profit by

performing more transplants, using cheaper bad kidneys, and providing reimbursable care. On the other

hand, performance concerns and patient welfare impose constraints: (i) transplanting too many patients

and using the bad kidney increases the likelihood of exceeding the CoP mortality limit; (ii) patients dislike

2Note: The notation q(x, k) is to indicate that post-transplant care is chosen when x and k are observed.
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excessive post-transplant care due to themarginal cost γ > 0. The center optimally trades off these incentives

by adjusting the transplant decision A(x̃), kidney choice k(x̃), and post-transplant care q(x, k). Next, I

characterize A∗(x̃), k∗(x̃), q∗(x, k) and present the proofs in Appendix.

Proposition 1. The optimal q∗(x, k) is an implicit solution to the equation D.3. A∗(x̃) takes the form of a

cutoff strategy D.6 and t∗ is the transplant threshold where patients with x̃ ≥ t∗ will receive transplants and

post-transplant care. Conversely, patients with x̃ < t∗ will receive no transplants nor post-transplant care.

The optimal kidney allocation k∗(x̃) is defined as:

k∗(x̃) =


g t∗ ≤ x̃ < t∗g,

b x̃ ≥ t∗g,

(no transplant) x̃ < t∗.

where t∗g, the good kidney threshold, is the root to equation D.5.

Because the center cannot observe a patient’s true health x and instead relies on the noisy signal x̃,

Proposition 1 implies a negative�sorting allocation rule based on x̃. Specifically, patients whose signals lie

in an intermediate range, x̃ ∈ [t∗, t∗g), receive the safer (good) kidney, while patients with strong signals,

x̃ ≥ t∗g, receive the riskier (bad) kidney. The intuition is that for borderline (moderate) signals, the good

kidney’s lower mortality risk (σg < σb) provides a significant survival benefit that justifies incurring its

waiting cost g. By contrast, for sufficiently high signals x̃ ≥ t∗g, that survival benefit diminishes and no

longer outweighs g, prompting the center to assign the cheaper (bad) kidney. This tradeoff in expected

benefit versus cost naturally yields a cutoff x̃ = t∗g above which the center switches from good to bad

kidneys.

B Comparative statics

In this stylized model, the pre-CoP announcement reflects τ → ∞, meaning no effective regulatory

constraints on the product of transplants and mortality, allowing centers to optimize without restrictions.

The post-CoP announcement reflects τ < ∞, introducing binding regulatory constraints. The following

result illustrates the comparative statics for the transplant threshold t∗, kidney choice t∗g, and post-transplant

care q∗(x, k) as CMS announces CoP (i.e., τ decreases). I present the proofs in the Appendix.

Proposition 2. As CMS announces CoP (i.e., τ decreases), the transplant threshold t∗ increases
(
∂t∗

∂τ < 0
)
;

post-transplant care q∗(x, k) increases
(
∂q∗(x,k)

∂τ < 0
)
; the good kidney threshold t∗g increases

(
∂t∗g
∂τ < 0

)
.

Proposition 2 predicts that as CMS announces CoP, the fraction of patients receiving a transplant de-

creases. However, this does not imply that enters are actively selecting healthier patients. Instead, the higher

threshold t∗ makes it more likely for a patient with better true health x to surpass it. Consequently, aver-

age health among the smaller set of transplanted patients rises (i.e., E[x|x̃ > t∗) is increasing in t∗). The

extent of this rise depends on the informativeness of the noisy signal x̃. When x̃ closely tracks x (i.e., low
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0 t∗ t∗g
x̃

No Transplant k∗ = g k∗ = b

(a) Kidney matching when CoP limit, τ → ∞ (before CoP)

0 t∗CoP t∗CoP
g

x̃

No Transplant k∗CoP = g k∗CoP = b

(b) Kidney matching when CoP limit, τ < ∞ (after CoP)

Figure D.VII: Kidney matching before CoP v.s. after CoP

Note: Panel A depicts the scenario when the CoP limit is not stringent (e.g., τ → ∞). Panel B depicts the scenario when the

CoP limit is very stringent (e.g., τ < ∞). The model predicts fewer bad kidney transplants because centers substitute the bad

kidneys for the good kidneys for patients with a strong signal, x̃ ∈ [t∗g, t
∗CoP
g ]. On the other hand, patients with intermediate signal,

x̃ ∈ [t∗, t∗CoP ], do not receive a transplant. Thus, the effect of CoP on good kidney transplants is ambiguous and depends on the
parameter value of the model (e.g., high/low waiting cost, g).

Var(u)), the stricter threshold effectively excludes less-healthy patients, strongly skewing the transplanted

group toward high health. Conversely, if x̃ is weakly informative (i.e., high Var(u)), the higher threshold

barely alters the health composition of transplanted patients.

Furthermore, Proposition 2 predicts fewer bad kidney transplants after CMS implements CoP. Using

Figure D.VII as an example, this decrease is because the center substitutes the bad kidneys with the good

kidneys for patients with a strong signal, x̃ ∈ [t∗g, t
∗CoP
g ]. However, this does not imply more good kidney

transplants because patients with intermediate signal, x̃ ∈ [t∗, t∗CoP ] will not receive a transplant due to

more stringent performance limits. Thus, the effect of CoP on good kidney transplants is ambiguous and

depends on the model’s parameter values (e.g., high/low waiting cost, g).
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C Proofs for Proposition 1 and 2

From equation D.1, the center’s objective function is

max
A(x̃),k∈{g,b},q

∫
x̃
A(x̃)

∫
x

Π(x,k,q)︷ ︸︸ ︷ρ
center profit︷ ︸︸ ︷
[π + αq] + (1− ρ)

patient utility︷ ︸︸ ︷[
xq − γ

2
q2 − 1{k=g}g

] p(x|x̃)dxdF (x̃)

s.t.

∫
x̃
A(x̃)

[∫
x
P (x, k, q)p(x|x̃)dx

]
dF (x̃) ≤ τ

(D.2)

We solve the maximization problem via backwards induction.

C.1 Solving for q∗

Let λ ≥ 0 be the Lagrange multiplier on the constraint. Define the Lagrangian:

L =

∫
x̃
A(x̃)

∫
x

[
Π(x, k, q)

]
p(x|x̃)dx dF (x̃) − λ

[∫
x̃
A(x̃)

∫
x
P (x, k, q)p(x|x̃)dxdF (x̃)− τ

]
.

Step 1: If the constraint is slack (λ = 0). For each x, we differentiate Π(x, k, q) with respect to q:

ρα+ (1− ρ)
[
x− γ q

]
= 0 =⇒ (1− ρ) γ q = ρα+ (1− ρ)x.

Hence

quncon(x) =
ρα+ (1− ρ)x

(1− ρ) γ
.

Step 2: If the constraint binds (λ > 0). For each x, we need

∂L
∂q

=

∫
A(x̃)

∂Π(.)

∂q
p(x|x̃)dxdF (x̃)− λ

∫
A(x̃)

∂P (.)

∂q
p(x|x̃)dF (x̃) = 0

where

∂

∂q

Π(x,k,q)︷ ︸︸ ︷{
ρ(π + α q) + (1− ρ)

[
x q − γ

2 q
2 − 1{k=g}g

]}
= ρα+ (1− ρ)

[
x− γ q

]
.

and

∂

∂q

P (x,k,q)︷ ︸︸ ︷[
1− Φ

(x+q
σk

)]
= −φ

(
x+q
σk

) 1

σk
,

Rearrange for q∗:

(1− ρ) γ q∗ = ρα+ (1− ρ)x+ λ
1

σk
φ
(
x+q∗

σk

)
.
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Thus we have the implicit solution:

q∗(x, k) =
ρα+ (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σk
φ
(
x+q∗(x,k)

σk

)
. (D.3)

If λ = 0, we revert to the unconstrained optimum. Otherwise, q∗(x, k) exceeds the unconstrained level,

reflecting a desire to reduce mortality.

C.2 Solving for k∗(x̃)

Upon seeing x̃, the center forms a posterior over x, where p(x|x̃) is derived from Bayes’ rule, with

priors x ∼ N(µx, σ
2
x) and u ∼ N(0, σ2

u). x and u are assumed to be independent. Π(x, k, q∗) is the payoff

for a transplanted patient of true health x given kidney k as defined in the previous section. Thus, the center

chooses k∗ at each x̃ such that:

k(x̃) = arg max
k∈{g,b}

Π̃(x,k,q∗)︷ ︸︸ ︷∫
[Π(x, k, q∗) − λP (x, k, q∗)] p(x|x̃) dx (D.4)

Next, we define:

D(x̃) = Π̃(x, g, q∗)− Π̃(x, b, q∗) (D.5)

As x̃ increases, the posterior shifts to higher x. Since Π̃(x, g, q∗) and Π̃(x, b, q∗) differ mainly by the cost g

and the difference in survival benefits, thenD(x̃) is decreasing in x̃: when x̃ is large, the expected incremen-

tal survival benefit of g is smaller, so D(x̃) may become negative, favoring kidney b. Thus, D(x̃) crosses

zero exactly once, giving a unique cutoff t∗g. We have the following cutoff rule:

k∗(x̃) =


g t ≤ x̃ < t∗g,

b x̃ ≥ t∗g,

(no transplant) x̃ < t∗.

C.3 Solving for the acceptance rule A(x̃)

Define the net benefit function, NB(x̃)

NB(x̃) =

∫
Π(x, k, q)p(x|x̃)dx− λ

∫
P (x, k, q)p(x|x̃)dx

Since the posterior distribution of p(x|x̃) is increasing in x̃,NB(x̃) is a monotonic function of x̃,A(x̃) takes

the form of a cutoff strategy:

A(x̃) =

1 if x̃ ≥ t∗

0 if x̃ < t∗
(D.6)
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where t∗ is such that NB(t∗) = 0. This completes the proof for proposition 1.

C.4 Comparative Statics: Effect of Decreasing τ

As τ decreases, the regulatory constraint tightens, and the Lagrange multiplier λ increases. This forces

the center to reduce the product

(# transplanted)× (# expected deaths).

They can do this in two ways:

• Raise t∗ (fewer transplants). Since

NB(x̃) =

∫
Π(x, q(x))p(x|x̃)dx− λ

∫
P (x, q(x))p(x|x̃)dx

increases in x̃, a higher threshold means fewer people qualify for a transplant.

• Raise t∗g (fewer bad kidney transplants). From

D(x̃) = Π̃(x, g, q∗)− Π̃(x, b, q∗)

a larger λ means centers can afford fewer expected deaths than before. This reduces the marginal

benefit of the bad kidney and raises t∗g

• Raise q∗ (improve post-transplant care). From

q∗(x, k) =
ρα+ (1− ρ)x

(1− ρ) γ
+

λ

(1− ρ) γ σk
φ
(
x+q∗(x)

σk

)
,

a larger λ makes q∗(x, k) bigger for each x—the center “overspends” on care (relative to the uncon-

strained level) to reduce mortality.

This completes the proof for proposition 2.
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